

CONSERVATION MANAGEMENT PLAN

400 000 000

(January 2022 to December 2031)

Jigme Singye Wangchuck National Park Department of Forests and Park Services Ministry of Agriculture and Forests 2021

CONSERVATION MANAGEMENT PLAN

(January 2022 to December 2031)

JIGME SINGYE WANGCHUCK NATIONAL PARK Department of Forests and Park Services Ministry of Agriculture and Forests Tshangkha, Trongsa, Bhutan.

Plan Prepared by:

- 1. Abir Man Sinchuri, Forestry Officer, Jigme Singye Wangchuck National Park, Tshangkha.
- 2. Letro, Sr. Forestry Officer, Nature Conservation Division, Thimphu.
- 3. Ngawang Gyeltshen, Dy. Chief Forestry Officer, Nature Conservation Division, Thimphu.
- 4. Tandin, Sr. Forestry Officer, Nature Conservation Division, Thimphu.

With Guidance and Support from:

- 1. Tashi Tobgyel, Chief Forestry Officer, Jigme Singye Wangchuck National Park.
- 2. Pankey Dukpa, Former Chief Forestry Officer of JSWNP.

Other Contributors:

Choki Dorji (Sr. Forest Ranger), Pema Thinley (Sr. Forest Ranger), Yeshi Wangdi (Sr. Forest Ranger), Phuntshok (Sr. Forest Ranger), Jamtsho (Sr. Forest Ranger), Sangay Tshewang (Sr. Forest Ranger), Ngawang Tenzin (Sr. Forest Ranger), Rinchen Gyeltshen (Sr. Forest Ranger), Karma Chorten Dendup (Forestry Officer), Cheku (Sr. Forest Ranger), Tshering (Sr. Forester), Jigme Rangdrel (Forestry Officer).

Suggested Citation:

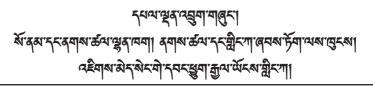

JSWNP 2021. Conservation Management Plan (January 2022 – December, 2031). Jigme Singye Wangchuck National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests, Bhutan.

Photo Credits:

- 1. Abir Man Sinchuri, JSWNP.
- 2. Kado Rinchen, JSWNP.
- 3. Phuentsho, National Biodiversity Center.
- 4. JSWNP Camera traps.

© Jigme Singye Wangchuck National Park, 2022.

ENDORSEMENT AND APPROVAL OF THE ROYAL GOVERNMENT OF BHUTAN

CONSERVATION MANAGEMENT PLAN OF JIGME SINGYE WANGCHUCK NATIONAL PARK (2022-2031)

"In accordance with the provisions of the Forests and Nature Conservation Act of Bhutan, 1995."

Submitted for Approval

Tashi Tobgyel Chief Forestry Officer Jigme Singye Wangchuck National Park

Sonam Wangdi

Chief Forestry Officer Nature Conservation Division

Department of Forests and Park Services

Approved By:

Hon'ble Secretary Ministry of Agriculture and Forests

SECRETARY

ร्रधन्पञ्चबन्द्मुबा बालुन्दा र्श्वे ब्रस्टान्द्रबबाश्व र्स्टव्याञ्चब्र विषय Royal Government of Bhutan Ministry of Agriculture and Forests Tashichho Dzong Thimphu: Bhutan

FOREWORD

Jigme Singye Wangchuck National Park is the third largest protected area in Bhutan and plays a vital role in conservation of biodiversity in the central region of the country. It is strategically located in central Bhutan to connect southern and northern conservation landscapes and acts as a crucial corridor for dispersal of wildlife and geneflow among various protected areas. The gazettement of this national park in 1995 was a huge milestone in achieving Royal Government's commitment of maintaining at least 60% of total geographical area under forest cover for all times to come, as mandated by the Constitution of the Kingdom of Bhutan.

With wide altitudinal variations, from as low as 250 masl in the southern sub-tropical region to as high as 4925 masl at the peak of Jowo-Durshing (Black Mountain range) in the alpine region, the national park has a great floral and faunal diversity, complimented by its rich cultural diversity including the aboriginal Monpa community. Based on a sound scientific methodology of extensive surveys, this management plan (2022-2031) is a science-based approach to biodiversity conservation with integration of human communities and their livelihood.

I am optimistic that this management plan will contribute immensely towards conservation of rich biodiversity of central Bhutan and bring in balance between conservation and developmental needs of the human communities within and around Jigme Singye Wangchuck National Park.

I wish Jigme Singye Wangchuck National Park best in fulfillment of this management plan.

Tashi Delek!

Thinley Namgyel

ব্যন্যস্থ্ৰব্যবস্থ্ৰশ্বস্থ্ৰশ্বন্থ্ৰশ্বশ্ব শিৰ্মণবৃদৰ্শগৰ্জন্বস্থ্ৰশ্বশ্বশ্ব ৰ্বশৃশ্বৰ্ধস্বস্থ্ৰদ্বশ্বশ্বিদ্বশাৰ্শ্বন্থা দিশাগ্ৰথান্ত্ৰদ্বশা Royal Government of Bhutan Ministry of Agriculture and Forests Department of Forests and Park Services Thimphu: Bhutan

DIRECTOR

PREFACE

It gives me immense pleasure to present the 4th Conservation Management Plan of Jigme Singye Wangchuck National Park (JSWNP) spanning for ten years from January 2022 to December 2031. JSWNP has made remarkable achievements in terms of conservation of the rich biodiversity in central Bhutan and in enhancement of livelihood of the park residents during the implementation of its previous three management plans in the last 25 years of the park's existence.

It is heartening to notice that this new plan has clear vision, mission, goal with realistic, reckonable, and time-bound objectives that are all geared towards accomplishing the goal of preserving the rich biodiversity and providing the ecosystem services to the nation.

The department also attaches great importance to the continued financial support and assistance bestowed by the Royal Government of Bhutan (RGoB), Bhutan for Life (BFL), GEF LDCF NAPA III project supported by UNDP, other donors and conservation partners for providing financial support to carry out major portions of the plan revision expenses like rapid biodiversity survey, socio-economic survey, local forest management planning, community consultation and drafting of this plan, for which we are immensely grateful.

Lastly, I would like to congratulate and express my appreciation to the management of JSWNP for coordinating and developing this conservation management plan, and Nature Conservation Division for their constant technical guidance in this development. I also commend the hard work and sacrifices made by each and every staff who were engaged in one way or the other in developing this important document.

Tashi Delek!

Lobzang Dorji

ACKNOWLEDGEMENT

Jigme Singye Wangchuck National Park is pleased to present this new Management plan, which is the fourth sequel in the park's conservation history of over 25 years. This conservation management plan will be implemented for ten years (2022 to 2031), during which the plan document will form the main basis of activity implementation in the park. The park management would like to convey sincere acknowlwdgement to the following for the successful completion of this management plan preparation;

The Nature Conservation Section (NCS) of the park led the whole process of the plan preparation, starting from planning and conduct of field surveys, coordination meetings and workshops, and final plan writing. The park management applauds the efforts put in by NCS. I also commend the efforts put by all the colleagues who have been actively involved in various field surveys and rapid assessment works, which are vital steps towards developing this plan.

The Nature Conservation Division (NCD) has been of great support in providing technical support and guidance throughout the plan preparation. Therefore, the park management would like to sincerely thank NCD for their timely support and guidance.

The management planning is a budget-intensive process and the park management is highly grateful to the funding agencies such as RGoB, Bhutan for Life (BFL) and GEF LDCF NAPA-III projects for kind support in terms of finance.

Thank You.

Tashi Tobgyel Chief Forestry Officer, JSWNP

LIST OF ACRONYMS

AAC _{Silv.}	Silvicultural Annual Allowable Cut
AAC _{Sust.}	Sustainable Annual Allowable Cut
AM	Adaptive Management
APA	Annual Performance Appraisal
BA	Basal Area
BC	Biological Corridor
BFL	Bhutan For Life
CA TS	Conservation Assured; Tiger Standards
CF	Community Forest
CFMG	Community Forest Management Group
CFO	Chief Forestry Officer
COVID-19	Corona-Virus Disease- 2019
DBH	Diameter at Breast Height
SES	Socio-Economic Survey
DoFPS	Department of Forests and Park Services
DoL	Department of Livestock
EOO	Extent of Occurrence
FFMG	Forest Fire Management Group
FMD	Foot and Mouth Disease
FNCA	Forest and Nature Conservation Act of Bhutan,1995
FNCRR	Forest and Nature Conservation Rules and Regulations of Bhutan
FO	Forestry Officer
FPES	Forest Protection and Enforcement Section
FR	Forest Ranger
FRMD	Forest Resources Management Division
FRMS	Forest Resources Management Section
FYP	Five Year Plan

ക്രര്	0.	່ອວ	a,
808	0	øs	94

GEF	Global Environment Facility
GIS	Geographic Information System
GNH	Gross National Happiness
GPS	Global Positioning System
Ha.	Hectare
HWC	Human-Wildlife Conflict
IAPS	Invasive Alien Plant Species
ICDP	Integrated Conservation and Development
ICIMOD	International Center for Integrated Mountain Development
IPCC	Intergovernmental Panel on Climate Change
IUCN	International Union for Conservation of Nature
JDNP	Jigme Dorji National Park
JSWNP	Jigme Singye Wangchuck National Park
Km ²	Square Kilometer
LFMA	Local Forest Management Area
LFMP	Local Forest Management Plan
LG	Local Government
Masl.	Meters above sea level
METT+	Management Effectiveness Tracking Tool
MHPA	Mangdechu Hydroelectric Project Authority
MoU	Memorandum of Understanding
NAPA	National Adaptation Program of Action
NBC	National Biodiversity Center
NBSAP	National Biodiversity Strategy and Action Plan
NCD	Nature Conservation Division
NCS	Nature Conservation Section
NTFP	Non-Timber Forest Produce
NWFP	Non-Wood Forest Produce
NWFP-MG	Non-Wood Forest Produce Management Group

PA	Protected Area
PNP	Phrumsengla National Park
PRA	Participatory Rural Appraisal
PWS	Phibsoo Wildlife Sanctuary
RBA	Relative Basal Area
RGoB	Royal Government of Bhutan
RMNP	Royal Manas National Park
RRA	Rapid Rural Appraisal
RSPN	Royal Society for Protection of Nature
SFES	Social Forestry and Extension Section
SMART	Spatial Monitoring and Reporting Tool
TAT	Turn Around Time
THyE	Tangsibji Hydro-Electricity Project
TL	Truck Load
UNDP	United Nations Development Programme
UWICER	Ugyen Wangchuck Institute for Conservation and Environmental Research
VIC	Visitor Information Center
WCNP	Wangchuck Centennial National Park
WCPA	World Commission on Protected Areas
WWF	World Wildlife Fund for Nature

<u>***</u>

eccolor

GLOSSARY OF LOCAL TERMS

Cham	Trees (Girth 3' to 3'11")
Chiwog	Lowest administrative unit, formed by group of villages
Chhu	River or Water
Drashing	Trees/ Timber (Girth 4'1" and above)
Dzongkhag	District
Gewog	Block
Gup	Elected head of Gewog
Jowo-Durshing	Local name for Black Mountains
Lhakhang	Temple
Sokshing	Leaf litter Collection areas
Tsamdro	Pastureland
Tsesa	Kitchen Garden
Tsim	Trees (Girth 1' to 2')
Zem	Hand-crafted basket made of cane or bamboo

TABLE OF CONTENTS

FOREWORD iv
PREFACE v
Acknowledgementvi
List of Acronyms
Glossary of Local Termsx
List of Figuresxv
List of Tables xvi
Executive Summaryxix
Part 1: Background1
1.2. Vision, mission and goals
Vision
Mission
Goals
Objectives
1.3. Salient features 3
1.4. National Park Zonation 4
1.4.1. Core Zone 5
1.4.2. Transition Zone
1.4.3. Buffer Zone 6
1.4.4. Multiple-Use Zone
Part 2: Current Status
2.1. Landscape Characteristics
2.1.1. Location and Extent9
2.1.2. Climate and Topography 10
2.1.3. Hydrology and Drainage11
2.2. Floral description11
2.2.1. Vegetation zones, land-use and habitat types11
2.2.2. Threatened floral species
2.2.3. Floristic Composition of the major lifeform distribution under each range & Forest Types
2.2.4. Range wise life-form composition of trees & shrubs, ground
vegetation

	2.3. Faunal description	20
	2.3.1. Mammalian Diversity	20
	2.3.2. Birds	25
	2.3.3. Herpetofauna	26
	2.3.4. Fishes	28
	2.3.5. Butterflies	28
	2.3.6. Dragonflies and Damselflies	28
2.4.	People and livelihood	31
	2.4.1. Demography and social structure	31
	2.4.3. Agriculture	33
	2.4.4. Livestock	34
	2.4.5. Human-Wildlife Conflicts (HWC)	37
2.5.	Forest Resource Area	42
	2.5.1. Community Forests (CFs)	43
	2.5.2. Non-Wood Forest Produce Management Groups (NWFP-MGs)	45
	2.5.3. Local Forest Management Areas	45
2.6.	Administration, service delivery and park infrastructure	46
Part 3: S	Summary review of the past plan	49
	3.1.1. Forest protection and law enforcement	49
	3.1.2. Forest resources management	49
	3.1.3. Research and monitoring	50
	3.1.4. Human wildlife conflict management	51
	3.1.5. Preservation of cultural and religious sites	52
	3.1.6. Strengthening of institutional capacity	53
	3.1.7. METT+ Assessment	54
	3.1.8. CA TS certification	54
	3.1.9. Water sources mapping	55
3.2.	Lessons learnt	56
	3.2.1. Funding source	56
	3.2.2. Partnership & Collaboration	56
	3.2.3. Adaptive management	56
3.3.	Gaps and carry over actions from previous plan	58
	3.3.1. Lesser-known taxa	58
	3.3.2. Eco-tourism with sustainable business models	58

3.3.3. (Climate change	58
3.3.4. I	nfrastructure	58
Part 4: Threat Analysis		61
4.1.Conser	vation threats in JSWNP	61
4.1.1.	Poaching	61
4.1.2.	Illegal extraction of timber and NWFPs/ stone and boulder/	
	surface collection	61
4.1.3.	Human wildlife conflict	62
4.1.4.	Grazing	62
4.1.5.	Forest fire	63
4.1.6.	Invasive species	
4.1.7.	Wildlife Disease	64
4.1.8.	Habitat degradation (Alpine grassland encroachment;	
	landslides; erosion etc.)	64
4.1.9.	Drying water sources	64
4.1.10.	Developmental activities	65
4.1.11.	Waste	65
4.1.12.	Climate Change	66
4.2. Manag	ement challenges	67
4.2.1.	Inaccessibility of the areas	67
4.2.2.	Developmental pressure	67
4.2.3.	High dependency on natural resources	67
4.2.4.	Poor conservation awareness	67
4.3.Threat	Ranking	68
Part 5: Manage	ment prescription	71
Part 6: Implem	entation plan and financial outlay	79
Part 7: Monitor	ring and Evaluation	85
References		93
APPENDIX		97
Appendix 1: LO	CAL FOREST MANAGEMENT PLANNING	97
Background		97
1. The forest ma	nagement areas	98
1.1. The Area		98
1.2. Forest Ty	pes and Condition	103

	1.3. Forest Use	106
	1.4. NWFP and Firewood	107
2.	Future Management	108
	2.1. Silviculture Measures and Management Options	108
	2.2. Tree Marking and Silviculture	110
3.	Yield Regulation	111
	3.1. Yield Regulation for Trong LFMA	111
	3.2. Yield regulation for Jigmechholing LFMA	112
	3.3. Yield Regulation for Korphu LFMA	112
	3.4. Yield regulation for Langthel LFMA	113
	3.5. Yield regulation for Tangsibji LFMA	113
	3.6. Yield regulation for Athang LFMA	114
	3.7. Yield regulation for Sergithang LFMA	114
4.	Demand-Supply Assessment	115
	4.1. Demand-Supply Assessment of Rural Timber	115
	4.1.1. Timber Demand-Supply assessment of Trong LFMA	115
	4.1.2. Timber Demand-Supply assessment of Jigmechholing LFMA	117
	4.1.3. Timber Demand-Supply assessment of Korphu LFMA	118
	4.1.4. Timber Demand-Supply assessment of Langthel LFMA	119
	4.1.5. Timber Demand-Supply assessment of Tangsibji LFMA	120
	4.1.6. Timber Demand-Supply assessment of Athang LFMA	121
	4.1.7. Timber Demand-Supply assessment of Sergithang LFMA	122
	4.2. Demand-Supply Assessment of Firewood	123
	4.2.1. Firewood Demand-Supply assessment of Trong LFMA	123
	4.2.2. Firewood Demand-Supply assessment of Jigmechholing LFMA	124
	4.2.3. Firewood Demand-Supply assessment of Korphu LFMA	124
	4.2.4. Firewood Demand-Supply assessment of Langthel LFMA	125
	4.2.5. Firewood Demand-Supply assessment of Tangsibji LFMA	125
	4.2.6. Firewood Demand-Supply assessment of Athang LFMA	126
	4.2.7. Firewood Demand-Supply assessment of Sergithang LFMA	
5.	Monitoring	127
	Appendix 2: Floristic composition of JSWNP	128
	Appendix 3. Faunal Diversity of JSWNP	162
	3.1. Mammals of JSWNP	162

3.2. Birds of JSWNP	164
3.3. Herpetofauna of JSWNP	172
3.4. Fishes of JSWNP	173
3.4. Butterflies of JSWNP	174
3.6. Dragonflies and Damselflies of JSWNP	183
Appendix 4. Summary Sheet for Trong LFMA	185
Appendix 5. Summary sheet for Jigmechholing LFMA	186
Appendix 6. Summary sheet for Korphu LFMA	188
Appendix 7. Summary sheet for Langthel LFMA	189
Appendix 8. Summary sheet for Tangsibji LFMA	191
Appendix 9. Summary sheet for Athang LFMA	192
Appendix 10. Summary sheet for Sergithang LFMA	194
Appendix 11. LFMP: Monitoring Sheet	195
Appendix 12. LFMP: Tree Marking Book for Construction	196
Appendix 13. LFMP: Tree Marking Book for Renovation	196
Appendix 14. LFMP: Tree Marking Book for Firewood	196
Appendix 15. LFMP: Gewog Register (Construction)	196
Appendix 16. LFMP: Gewog Register (Renovation)	197
Appendix 17. LFMP: Timber Allotment Report	197
Appendix 18. LFMP: Annual Report of LFMA	197

LIST OF FIGURES

Figure 1.	Adaptive Management Cycle	4
Figure 2.	Zonation (2021) Map of JSWNP	7
Figure 3.	Land-use map showing 17 land-use types classified inside the park	12
Figure 4.	<i>Paphiopedilum fairrieanum</i> in its natural habitat at Rukha, Athang, Wangdue Phodrang	13
Figure 5.	Cluster dendrogram showing sequential clustering of trees and shrubs	14
Figure 6.	Range wise cover % distribution pattern of eight lifeform group of trees and shrubs	15

Figure 7.	Range wise cover % distribution pattern of eight lifeform group of ground vegetation	16
Figure 8.	Range wise cover % distribution pattern of epiphyte orchids classified into 7 tribes	17
Figure 9.	DBH class distribution of trees and shrubs under each range illustrating forest structural features of the park	18
Figure 10.	Height class distribution of trees and shrubs under each range illustrating forest structural features of the park	18
Figure 11.	Species area curve of the trees and shrub	19
Figure 12.	Species dominance curve of trees and shrubs	19
Figure 13.	Different wildlife evidences encountered during the transect survey	22
Figure 14.	Mammalian species diversity across different families	22
Figure 15.	Tiger and co-occurring felids and ungulates as ascertained from camera trap survey	24
Figure 16.	Different intensity of threats as observed during the trail transect survey	24
Figure 17.	Diversity of Herpetofauna recorded in JSWNP	27
Figure 18.	Gewog wise population status in JSWNP	32
Figure 19.	Proportion of population living IN and OUT of the Park	32
Figure 20.	Sources of income and their Importance ranking	33
Figure 21.	Constraints to agriculture and their severity in JSWNP	34
Figure 22.	Importance of Livestock	35
Figure 23.	Gewog-wise livestock feeding habits in JSWNP	36
Figure 24.	Pasture holding and intention to develop new pastures	36
Figure 25.	Constraints to Livestock rearing	37
Figure 26.	Gewog wise proportion of crop depredation against different wild animal species	38
Figure 27.	Species-wise proportion of crop damage	38
Figure 28.	Crop type wise damage proportion	
Figure 29.	Percentage of respondents who lost livestock to predators	40
Figure 30.	Livestock depredation trend in JSWNP	40
Figure 31.	Human-Tiger Conflice Hotspots in JSWNP	
Figure 32.	HWC Hotspot map of JSWNP, 2021	
Figure 33.	Organogram of JSWNP	46

Figure 34.	Map showing cultural sites in JSWNP	53
Figure 35.	Status of water sources in JSWNP	55
Figure 36.	Gewog wise water sources status in JSWNP	65
Figure 37.	Threat Ranking of JSWNP using Miradi software	.68
Figure 38.	Conceptual Framework of the Management Plan	71
Figure 39.	Implementation plan and financial outlay of the Management Plan	79
Figure 40.	Monitoring plan template with yearly target for the	
	Management Plan	
Figure 41.	Overview map of Trong LFMA	100
Figure 42.	Overview map of Jigmechholing LFMA	101
Figure 43.	Overview Map of Korphu LFMA	101
Figure 44.	Overview Map of Langthel & Tangsibji LFMA	. 102
Figure 45.	Overview map of Athang LFMA	.102
Figure 46.	Overview Map of Sergithang LFMA	103

LIST OF TABLES

Table 1.	Zonation area details of JSWNP	7
Table 2.	Summary of the plots surveyed under each range with mention of plot size and forest structural features	17
Table 3.	Species diversity indices in different habitats as observed through sign survey	21
Table 4.	Species of conservation significance found in JSWNP	23
Table 5.	Avi-faunal diversity as obtained from the rapid assessment following Mackinnon Listing Technique	25
Table 6.	List of threatened species in JSWNP	26
Table 7.	Gewog wise households and population distribution of the park	31
Table 8.	Gewog wise land holding in JSWNP	33
Table 9.	Gewog-wise Livestock holding in JSWNP	35
Table 10.	Details of Community Forests in JSWNP	43
Table 11.	Details of LFMPs in JSWNP	45

Table 12.	Summary of illegal timber extraction cases in JSWNP	52
Table 13.	List of major Invasive plants in JSWNP	53
Table 14.	Gewogs and settlements details in JSWNP	98
Table 15.	LFMA-wise Forest Type Distribution	104
Table 16.	LFMA-wise Age and Stand Type distribution, Canopy Closure	
	and Stand Condition	105
Table 17.	LFMA-wise Site Condition description	106
Table 18.	LFMA-wise Forest Use	106
Table 19.	LFMA-wise NWFP and Firewood availability	107
Table 20.	LFMA-wise Silvicultural Measures	110
Table 21.	Demand-Supply Assessment (Timber) of Trong LFMA	116
Table 22.	Demand-Supply Assessment (Timber) of Jigmechholing LFMA	117
Table 23.	Demand-Supply Assessment (Timber) of Korphu LFMA	118
Table 24.	Demand-Supply Assessment (Timber) of Langthel LFMA	119
Table 25.	Demand-Supply Assessment (Timber) of Tangsibji LFMA	120
Table 26.	Demand-Supply Assessment (Timber) of Athang LFMA	121
Table 27.	Demand-Supply Assessment (Timber) of Sergithang LFMA	122
Table 28.	Firewood Demand-Supply assessment of Trong LFMA	123
Table 29.	Firewood Demand-Supply assessment of Jigmechholing LFMA	124
Table 30.	Firewood Demand-Supply assessment of Korphu LFMA	124
Table 31.	Firewood Demand-Supply assessment of Langthel LFMA	125
Table 32.	Firewood Demand-Supply assessment of Tangsibji LFMA	125
Table 33.	Firewood Demand-Supply assessment of Athang LFMA	126
Table 34.	Firewood Demand-Supply assessment of Sergithang LFMA	126

EXECUTIVE SUMMARY

Often referred to as the heartbeat of the protected area system of Bhutan, Jigme Singye Wangchuck National Park (JSWNP), erstwhile known as the Black Mountain National Park, was gazetted as a national park in 1995. With an area of 1730 km² JSWNP is the third larges protected area in the country after Wangchuck Centennial National Park (WCNP) and Jigme Dorji National Park (JDNP). The Park, as of December 2018 has implemented three conservation plans, and this is the fourth conservation management plan of JSWNP, prepared for ten years, 2022 to 2031.

This management plan is prepared based on findings of a robust biodiversity assessment, Local Forest Management Planning (LFMP), Socio-economic Survey (SES) of the resident communities and zonation exercise. Existing data on human wildlife conflict (HWC), species records, invasive species and other data were also used. In addition, a strategic framework analysis and several Participatory Rural Appraisals (PRA), stakeholder consultation at local, dzongkhag and national level have contributed to formation of this plan to the final shape.

The first chapter of the plan gives a brief background information about JSWNP and its conservation outlook; specifying the vision, mission, objectives and goals of the park. It highlights on the salient features of this plan document and then details out the zonation of the park, describing all zones (core, transition, buffer and multiple-use zones) designated in the park.

The second part comprises of detailed description of the current status of JSWNP under which floral description, faunal description and socio-economics of the park residents are described at length. Owing to presence of different vegetation zones (sub-tropical to alpine) in the park and a robust biodiversity survey, a total of 876 species of plants (including 92 species of orchids), 55 species of mammals, 323 species of birds, 376 species of butterflies, 42 species of herpetofauna and 16 species of fishes have been recorded from the park. Socio-economics wise, the park has a total of 601 households inside its boundary and a total population of 5538 individuals (2937 males and 2601 females), whose primary source of livelihood is agriculture and livestock rearing. The second part also describes the forest resource areas in the park such as community forests (CFs) and local forest management areas (LFMAs), on which the local communities are dependent.

The third part presents the overall review of the past management plan, highlighting on the objectives that have been fulfilled during the plan period, issues and challenges faced during the plan implementation, lessons learnt from the plan implementation and gaps and carry over activities from the previous plan.

The fourth part identifies conservation threats and management challenges in JSWNP. Then each of the conservation threats are ranked. This is followed by fifth part which, based on the threats ranking, proposes management prescriptions under six broad conservation objectives that are further divided into 20 strategies and 85 strategic actions. This is followed by sixth part that details out implementation plan and financial outlay of this plan and the seventh part outlines monitoring an evaluation plan of the plan implementation.

The plan also has a detailed local forest management plan of seven gewogs having human settlements in JSWNP, put together under Appendix 1.

This management plan aims to address conservation threats and management challenges facing JSWNP during the next ten years through proper implementation of the activities prescribed in this plan document.

The financial outlay for this plan has been prepared referring to the financial outlay of BFL project, and RGoB's funding outlay as per the 12th Five Year Plan. The major portion of the funds for the plan implementation would come from the Bhutan for Life (BFL) project during the initial years and would be gradually overtaken by RGoB and other conservation donors over the years.

PART 1: BACKGROUND

1.1. History and Significance

Nestled in the Eastern Himalayas and sandwiched between the two giant nations, India to the South and China to the north, Bhutan is a small mountainous country with a total geographic area of 38,394.00 km². The country, owing to its strategic location at the ecotone of two major biogeographic realms, the northern Palearctic and the southern Indo-Malayan realms, Bhutan has a rich natural resources and diverse flora and fauna. Under the visionary leadership of our kings, environmental conservation in Bhutan has always been given the foremost priority. Environmental conservation is one of the four pillars of Gross national Happiness (GNH), Bhutan's developmental philosophy that seeks to promote human development and manage environmental conservation within a sustainable strategy guided by Buddhist ethics. As such, today Bhutan has over 71% of the country under forest cover and the Royal Government of Bhutan (RGoB) has conserved overwhelming 51.44% of the country's total landmass under Protected Areas network, which comprises of five National Parks, four Wildlife Sanctuaries, one Strict Nature Reserve, one Botanical Garden and eight Biological Corridors (DoFPS, 2015).

Often referred to as the heartbeat of the protected area (PA) system of Bhutan, Jigme Singye Wangchuck National Park (JSWNP) is strategically located in the central region of Bhutan to connect the conservation landscapes in all four directions. It shares boundary with Royal Manas National Park (RMNP) in the south, connects to Wangchuck Centennial national Park and Jigme Dorji National Park in the north via BC 8, and to Phibsoo Wildlife Sanctuary (PWS) in South-West and Phrumsingla National Park (PNP) in the East via BC 3 and BC 4 respectively. It is the third largest protected area in the country, with an area of 1730 km². It was notified as a National Park in 1993 and operationalized in 1995. The national park was formally known as Black Mountain National Park, attributing to the Black Mountain ranges, which forms the core of the national park; however, it was renamed as Jigme Singye Wangchuck National Park in 2001 to honor the commitment made by His Majesty the fourth Druk Gyalpo towards environmental protection and conservation (JSWNP, 2014).

Due to the prevalence of wide altitudinal variation, from as low as 250 masl in the south to 4925 masl at the peak of *Jowo Durshing*, the national park has a good representation of varied vegetation types ranging from sub-tropical to alpine landscapes enabling different habitat types and great species diversity. Over 55 species of mammals, 323 species of birds, 376 species of butterflies 16 species of fishes and more than 42 species of herpeto-fauna have been recorded in the national park. Many of these species are globally threatened and of great conservation significance. Some of these species are the Bengal tiger (*Panthera tigris tigris*), musk deer (*Moschus chrysogastor*), red panda (*Ailurus fulgens*), golden langur

(*Trachypithecus geei*), Himalayan black bear (*Ursus thibetanus*), gaur (*Bos gaurus*), the critically endangered White-bellied heron (*Ardea insignis*), and Rufous-necked hornbill (*Aceros nipalensis*) to name a few.

The national park is also very significant in providing structural and functional linkages between between different protected areas of the country due to its strategic location, at the centre (Letro, 2018). It functions as a crucial linkage between the southern and the northern conservation landscapes by enabling smooth movement of wildlife, especially the tiger and migratory bird species between these landscapes. The high mountains in the central regions of the national park are important water sources that drain into the Mangdechhu river in the east and Punatshangchhu river in the west. The Nikachhu joins the Mangdechhu from the north. All of these rivers are important in terms of hydro-electricity production.

At the local level the national park is significant as the park has a diversity of communities living inside, which includes two of Bhutan's first settlers, the <u>Monpa</u> communities in Jangbi, Wangling and Phrumzur villages of Langthel gewog under Trongsa dzongkhag and Reeti village under Jigmechholing gewog of Sarpang dzongkhag, and *Olep* community in Rukha village in Athang gewog of Wangdue Phodrang dzongkhag. These communities are very important both culturally and historically. However, their cultural and linguistic practices are at the verge of extinction and JSWNP plays important role in their conservation (Letro and Wangchuk, 2016).

1.2. Vision, mission and goals

Vision

"A conservation landscape with natural biodiversity thriving in coexistence with values and aspirations of local community and enabling a vital connectivity between southern and northern conservation landscapes of Bhutan."

Mission

"The biodiversity is valued, conserved and sustainably utilized for environmental and social welbeings, through an integrated management approach."

Goals

- 1. The conservation and protection of key species and its habitat are strengthened in the park.
- 2. The park's natural resources are sustainably managed under scientific management plans.
- 3. Unique landscapes and ecosystems are managed and improved.
- 4. The livelihood and wellbeing of park residents are enhanced.

Objectives

- 1. To strengthen protection of wildlife and forest resources
- 2. To strengthen wildlife monitoring and research
- 3. To manage and improve wildlife habitats
- 4. To ensure sustainable management of natural resources
- 5. To ensure harmonious coexistence of local communities and national park
- 6. To strengthen national park institutional and technical capacity

1.3. Salient features

This plan is developed following scientific methods and guidelines, particularly Voume IV of the Forest and Nature Conservation Code of Best Management Practices of Bhutan (DoFPS, 2021). The data on which this plan is based were collected through biodiversity survey (mammal, birds, vegetation), socio-economic survey and Local Forest Management Planning (LFMP). Existing data on insects, fishes, herpeto-fauna, orchids and invasive plant species were also used for the planning.

A team of technical experts were invited from the Nature Conservation Division (NCD) for interpretation of these data, and based on the findings from the data analysis, the management prescriptions for the next ten years were derived.

The plan is based on the features of Adaptive Management. Adaptive management is simply learning from past management actions to improve future planning and management. It comprises of five steps forming a cycle: 1. Conceptualise the management regime, 2. Plan the actions and strategies, 3. Implement the planned activities, 4. Analyse the impact of interventions, communicate the outcome and adapt to emerging needs, and 5. Capture the lessons learnt and incorporate them into next plan (Fig. 1). This management plan comes at the time of COVID-19 pandemic when activities implementation is not guaranteed due to many associated restrictions. Therefore, the plan is highly adaptive in nature, which allows flexibility in implementation, both in modality and timeline, with regular review of the progress and building on the experiences of past year's progress. Every year, the management team of the park will review the outcomes of this plan implementation and adapt to the emerging needs, given the current unpredictable situations.

One of the key salient features of this management plan is its prerequisite to develop an annual operational plan (OP) and implement the prescribed activities based on the OP. The OP will be prepared annually, after thorough review of this management plan (which will act as the master plan for 10 years), reviewed and approved by the department and implemented by the national park.

Figure 1: Adaptive Management Cycle

1.4. National Park Zonation

Unlike most protected areas (PAs) around the world, Bhutan has local communities living inside the protected areas who enjoy traditional user rights over natural resources. This demands for an integrated approach in maintaining the ecological integrity of the PAs and meeting developmental needs of the park residents. The National Forest Policy of Bhutan, 2011 requires our PAs to be managed based on functional zones to accommodate integrated conservation and development through a variety of appropriate management regimes, which is further translated as a requirement in the Forest and Nature Conservation Rules and Regulations (FNCRR, 2017).

Therefore, based on such needs, JSWNP carried out the zonation of the park in 2021 as per the Zonation Guideline of Bhutan, 2020 (NCD, 2020); with the fundamental aim to classify the park into different zones for conservation of species and their habitats, and to support resource use and other social needs for its residents. The zonation exercise was completed using scientific concepts, methods and tools applied globally such as Maxent, Zonation and GIS. To achieve a realistic, data-based zonation output, certain species of wildlife were prioritized, especially those species that are threatened as per IUCN nomenclature. Major

focus was given to tiger, other cat species such as common leopard (*Panthera pardus*), Asiatic golden cat (*Catopuma temminckii*) and clouded leopard (*Neofelis nebulosa*), wild dog (*Cuon alpinus*), Himalayan black bear, musk deer, golden langur, red panda and bird species such as White-bellied heron, Hornbills, Himalayan monal (*Lophophorus impejanus*), Blood pheasant (*Ithaginis cruentus*) and Satyr tragopan (*Tragopan satyra*). The data on these species was fed to zonation software, and the output from the software was further refined using GIS software and field truthing exercises. Community consultation was carried out at two levels; firstly, before the zonation exercise all the communities of the park were consulted during data collection, and second round of consultation was done after the first draft of management plan was produced. Peoples' feedback, suggestions and complaints were compiled and incorporated into the final copy of the conservation management plan.

Apart from identifying areas important for biodiversity conservation, habitat preservation and protection for long-term persistence of biodiversity and ecosystem, the park zonation will benefit in better management of ecosystem services to park residents, down-stream users and visitors alike.

The zonation exercise designated the following four zones in JSWNP, in line with the zonation guideline of Bhutan, 2020:

1.4.1. Core Zone

The core zone is a non-negotiable zone where any kind of anthropogenic activities are strictly prohibited except for conservation activities such as patrolling and regulated scientific studies that effect conservation.

A total of 953.1 km2 which equals to 55% of the total PA area has been identified and designated as the core zone. The zone is separated into two parts by a transition zone that connects Nabji side to Reeti side through Dungkola. The core zone is formed of areas with high conservation values that provide critical services for the persistence of flora and fauna of international, national or local importance including resident or migratory fauna. Core habitats of focal species such as tiger, musk deer, red panda, and the endemic *Primula chasmophila* are all covered in the core zone. The least explored Black Mountain range, which is unique in multiple ways, is more or less covered under this zone.

1.4.2. Transition Zone

Transition zones are areas of interdependence between wildlife and communities wherein, traditional and legal rights for sustainable use of natural resources is permitted for a certain period of time. The protection status of this zone shall become equivalent to that of the core zone except during the traditional/legal use-right season or for a fixed time use.

An area of 42.3 km2 which is equal to 2% of total PA area has been designated as transition zone. The zone has two parts; one connecting Nabji side to Reeti side through Dungkola

which is areas where cattle grazing has been practiced by few herders of Bumthang since the time immemorial, and the other one encompassing the seasonal grazing areas in the Simkharka area.

1.4.3. Buffer Zone

The buffer zone is classified mainly to provide cushioning function to the core or transition zone when these zones are located in the immediate vicinity of anthropogenic disturbances both from within and outside of the PAs.

An area of 123.2 km² which is equal to 7% of the total PA area has been designated as buffer zone. This is mainly formed of 500m buffer between core and multiple-use zones plus a separate buffer designated to cushion the anthropogenic activities by people of Simkharka though no multiple-use zone is designated in the area for there is no human settlement inside the park area. However, since the human settlement is located right outside of the park area, a buffer stretch was felt necessary.

1.4.4. Multiple-Use Zone

The multiple use zone may include settlements, built-up areas, private registered lands and resource allocation areas for the PA residents. This zone is also termed as 'zone of cooperation' underscoring the role of cooperation between the park management and its residents. This is a zone where stakeholders agree to work together to manage and use the area in a sustainable manner to benefit both people and wildlife. This zone encompasses all the LFMP areas of all the communities.

Overall, an area of 611.4 km² which is equal to 35% of total PA area has been designated as the multiple-use zone. This zone is formed by five parts as follows;

Reeti community has an area of 41.6 km² as multiple-use zone, which comprises of all the LFMP area plus additional areas where human activities such as cattle herding and Non-timber Forest Products (NTFP) collection are prominent.

Chendebji village has 12.1 km² as its multiple-use zone, which is the area around the agricultural fields of the village and a small stretch of area adjacent to Chendebji to Nyala Dangla where some level of human activities such as NTFP collection and firewood collection are in practice.

Phobji gewog has 71.3 km² of multiple-use zone despite the gewog not having any human settlement in the park area. This zone has been designated due to the fact that the areas such as Khebethang, Wangjela, Maniting, Jari-Busa, Yakchu, Khephu, Bruksana and Dungshingtshang under Phobji gewog have been used as transitional cattle, yak and sheep herding ground by the people of the gewog for centuries and the practice is still active. The people use the area for more than 8 months every year; therefore, it was necessary to demarcate the area as multiple-use zone given their traditional rights.

Adha-Rukha has an area of 129.4 km² as multiple-use zone to cater to the resource needs of the people of Athang gewog inside the park. The zone covers villages in the Adha region, extends towards Taksha through Nangshina and encompasses the communities towards Rukha side.

Langthel, Korphu and Trong gewogs altogether have 357.0 km² as multiple-use zone. This covers areas to cater to the resource needs of all communities of these three gewogs inside the park jurisdiction. All three gewogs have LFMPs, the areas of which are covered within the multiple-use zone. The following table summarizes the park zoning details of JSWNP;

Zonation Area Details							
SI. No.	Zones	Locality	Coverage (Km2)	Total (Km2)	% of PA area		
1	Core Zone	-	953.0	953.1	55.1		
2	Buffer Zone	-	123.0	123.2	7.1		
3	Transition Zone	Simkharka	17.6	42.3	2.5		
		Nabji-Reeti	24.7				
4	Mutiple Use Zone	Reeti	41.6	611.4	35.3		
		Chendebji	12.1				
		Phobji	71.3				
		Adha-Rukha	129.4				
		Langthel-Korphu-Trong	357.0				
		1730.0	100.0				

Table 1: Zonation area details of JSWNP

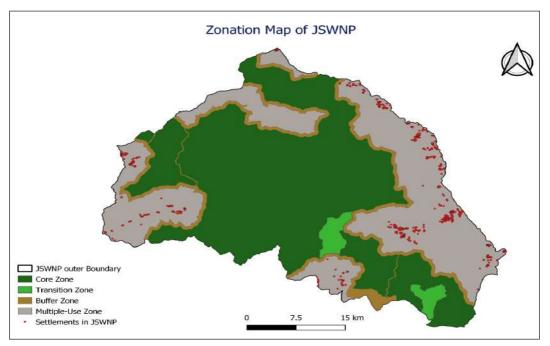


Figure 2: Zonation Map of JSWNP, 2021.

PART 2: CURRENT STATUS

2.1. Landscape Characteristics

2.1.1. Location and Extent

JSWNP is located between the latitudes of 27° 1' 20.64" to 27° 29' 13.92" North and longitudes of 90° 4' 5.52" to 90° 41' 19.32" East, covering an area of 1730 Km². JSWNP covers 10 gewogs, wholly or partly, from within the political boundaries of five Dzongkhags (districts) of Trongsa, Sarpang, Tsirang, Wangdue Phodrang and Zhemgang. From Trongsa, Korphu gewog entirely falls inside the park and Langthel and Tangsibji gewogs fall partly inside the park. From Sarpang, about half of Jigmechholing Gewogfalls inside the park and Chhudzom (Dovan) Gewogjust touches the park at one point. From Tsirang, Sergithang and Phuntenchhu gewogs have small parts of them falling inside the park. From Wangdue Phodrang, around half of Athang and Phobji gewogs fall inside the park and from Zhemgang, part of Trong gewog falls inside JSWNP.

The boundaries of the park are as follows:

East: Starting from the confluence of Nikachhu and Mangdechhu the boundary follows the latter towards the south until its confluence with Yangdigangchhu at 27° 8′ 52.691″ N 90° 41′ 17.805″ E which is demarcated with boundary pillar (Feno peg, No. 80187) in Tingtibi.

South: The southern boundary of the park follows Yangdigangchhu up to its junction with the ridge from Tamala at GPS coordinate 90° 40'27" E and 70° 06'36" N. It follows the ridge up to Tamala peak at 2193 masl. The boundary then descends and follows the Kuilegangchhu up to the junction of Hartikhola and end of the ridge at 27° 1' 22.50" N; 90° 37' 21.40" E, where boundary pillar No. 0065511 is fixed at the junction. From here, the boundary follows the ridge above Samkhar where two boundary pegs are fixed, and runs till it meets with Ruthalgang chhu at 90°33'22" E and 27°1' 32.85" N. It then follows upstream along Ruthalgangchhu at 27° 2' 6.300" N; 90° 34' 21.400" E and peg No. 0065513 is fixed at the Rakshadung from where the boundary follows the ridge up to Ranzipong above Chungshing village at 27° 2' 3.400" N 90° 34' 11.600" E, demarcated with peg no. 0065512. The boundary then follows the ridge till the peak (2335m) and then descends to join Galechhu at 90° 29'30" E and 27° 3'30" N. From here the boundary follows the main stream of Galechhu till its western tributary at 90° 29'30" E and 27° 2'30" N, and then follows the tributary up to the peak at 2057 m; it then descends to join Gongkhola at 90° 26'45" E and 27° 3' 45" N. It then follows Gongkhola upstream and then the western ridge till Mangarling dara (27° 4' 43.300" N 90° 25' 8.300" E) where Peg No. 0065517 is fixed. It then follows north of Mangarling dara ridge until GPS 27° 5' 12.400" N 90° 25' 2.600" E, which is demarcated with Peg No. 0065518. Then it descends along Morgangling dara to join Kharkhola at 27° 5' 31.000" N90° 23' 53.600" E, demarcated with boundary peg No.65515. The boundary then

follows upstream of kharkhola till Norbugang Ney at GPS coordinate 27° 6' 37.400" N,90° 23' 46.900" E, demarcated with boundary peg no. 0065514 and then follows western ridge till Malingdrangra at Tsunithang village at 27° 6' 4.200" N 90° 21' 54.900" E, demarcated with peg No. 0065516. It then follows the north-western ridge to meet a peak of 3068 m and descends to join Burichhu at 90°19'30" E and 27° 9'00" N; follows Burichhu up to 90° 16'15" E and 27° 7'45" N (2345 masl) and then follows its western tributary to meet a peak of 3445masl. It then descends along the ridge just below the confluence of Punatsangchhu and Harachhu.

West: From below the confluence of Harachhu and Punatshangchhu at 90° 4'11.15"E 27°10'44.72"N the boundary follows Punatshangchhu up to its confluence with Kisonachhu; it then follows Kisonachhu up to its confluence with Marachhu and Kangkhachhu at 27°7'39" N; 90° 6' 7.3" E (Peg No. 0065519); it then follows Kangkhachhu towards North till it reaches Khiphu at the end of ridge with Kangakhachhu, at 27° 19' 30.60" N 90° 5' 29.40" E (Peg No. 0065521) and follows along ridge towards northeast and drops at Tarana with Marachhu at 27° 20' 39.60" N90° 9' 0.80" E (Peg No. 0065520). Then the boundary follows Marachhu till the north of Khebeythang; and then follows the ridge up to Selela to join northern boundary.

North: The northern boundary starts from Selela and ascends along the ridge going northeast to meet a peak of 4136 masl., and joins with the tributary of Lamchela/Khebechhu; follows the tributary to join the main stream of Lamchelachhu at 90° 20'15" E and 27° 29' N. The boundary then follows, Lamchelachhu up to its confluence with Nikkachhu or Chendebjichhu and then follows Nikachhu up to its confluence with Mangde chhu.

2.1.2. Climate and Topography

JSWNP is one of the few protected areas that represents great altitudinal variation. The wide elevation range and mountainous terrain create complex climatic conditions; however, the park can be broadly categorized into four climatic zones; wet-subtropical, temperate, sub-alpine and alpine zones. The wet-subtropical climatic conditions prevail along the southern regions of the national park with altitude as low as 150 masl. The temperate conditions prevail along the mid-altitude areas all around the national park, and the sub alpine and alpine conditions occur mainly in the north-central part of the park where the Black Mountain range rises to form permanent ice cap. The south-west monsoon contributes most of the annual rainfall from June to September. The rain shadows imposed by the high mountain ranges result in localized rainfall gradients during this period.

Topographically, the north-central part of the national park has rugged landforms, with peaks rising to almost 5000 masl at the highest point, while the southern parts are relatively less steep and rugged.

Geologically, the mountains are recent and steep-sided, consisting largely of Pre-Cambrian and early Paleozoic quartzite and gneiss, with some areas with sedimentary limestone, dolomite, sandstone and shales. The soils are generally clay loam, with good permeability and moderate moisture retention.

2.1.3. Hydrology and Drainage

The national park is surrounded by three major rivers: The Mangdechu defines the eastern boundary starting from its confluence with Nikka Chhu below Tangsibji in Trongsa to Tingtibi, Nikachu drains the Chendebji valley in the northern part of the park till its confluence with Mangdechu, whereas Punatshangchu touches the mid-western part of the park in Taksha. There are many glacial lakes in the Black Mountain region. The most distinct ones are the Jeadhha Tsho, Mendey Tsho, Buxa Tsho, Tsho Zhao, Yue Tsho and Ser Tsho.

Numerous streams originate from these snow-fed alpine lakes which form smaller rivers like the Hara-chu, Nabji-chu, Berti-chu, Phrumzur-chu, and the Waichhen-chu. This network of small perennial and annual tributaries flow down the steep slopes, often as waterfalls and along valleys to become tributaries of the larger rivers. The distinct rainy and dry seasons results into a wide seasonal variation in the river flows, with large volumes of sedimentladen water flowing during the monsoon and low volume during the dry, winter season. The local communities also rely on the water from these rivers for domestic consumption and for irrigation.

2.2. Floral description

2.2.1. Vegetation zones, land-use and habitat types

The national park has three major eco-floristic zones with different vegetation types and they are: 1. Sub-tropical zone, 2. Temperate zone, and 3. Alpine zone. Due to the wide-range of altitude and variation in climatic conditions, the park supports a wide range of forest types and habitat types within the different land-use types. Forest constitutes the dominant ecosystem with 95% per cent under forest cover and 17 land-use types classified inside the park (LCMP, 2016). The presence of 11 forest types including meadow, wetland, rocky outcrop, cave, limestone formation etc., signifies the presence of diverse habitat types for successful conservation of fauna and flora inside the park.

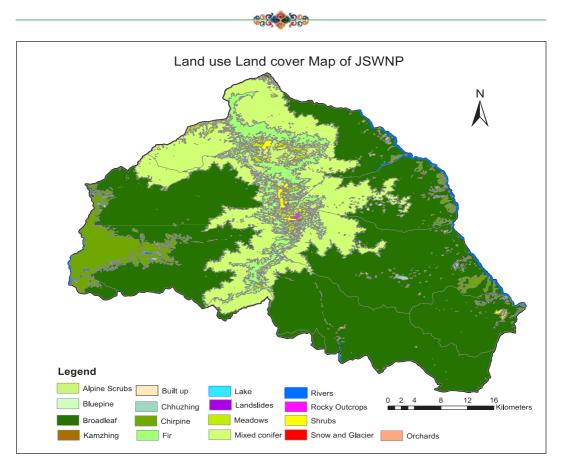


Figure 3: Land-use map showing 17 land-use types classified inside the park

2.2.2. Threatened floral species

The Park is home to so many species of threatened flora and the conservation of those species will be of utmost importance for achievement of overall conservation goals and also in providing ecosystems goods and services to the communities residing inside the park. The Species *Paphiopedilum fairrieanum* was recorded under Taksha range and the assessment on population status, habitat characteristics and threat level to the species was fairly understood for management. However other threatened floral species recorded inside the park were: *Cypripedium himalaicum, Gastrochilus calceolaris, Primula chasmophila, Nardostachys jatamansi, Paris polyphylla, Panax pseudo-genseng, Taxus baccata etc.* require further assessment for sustainable management. The direct and indirect threat observed were mainly illegal collections, forest fires, human disturbance, browsing and climate change.

Figure 4: Paphiopedilum fairrieanum in its natural habitat at Rukha, Athang, Wangdue Phodrang

2.2.3. Floristic Composition of the major lifeform distribution under each range & Forest Types

A. Floristic Composition

Recent surveys recorded 876 species of plants inside the 77 vegetation plots and they are154 evergreen trees, nine conifer trees, 69 deciduous trees, 99 evergreen shrubs, 93 deciduous shrubs, 19 evergreen palms, 123 woody and non-woody climbers, 25 grasses and bamboos, 173 perennial herbs, 95 annual herbs and 92 epiphyte and terrestrial orchids inside the park (*Appendix 1*). Based on the analysis, seven cluster solution with 11 forest types were classified as depicted in Figure 5 below;

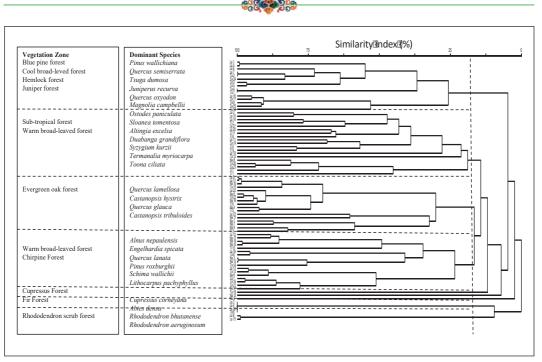


Figure 5: Cluster dendrogram showing sequential clustering of trees and shrubs using Relative Basal Area in % (RBA) data occurring inside 77 plots and the similarity index scale (%) arbitrarily marked at 17 % portraying 7 cluster solution with dotted lines. The cluster analysis was performed using distance measure of relative Sorensen (Bray-Curtis) and group average as linkage method.

B. Forest types

i. Blue pine forest, Cool broad-leaved forest, Hemlock forest and Juniper forest

These forest types are spread within the jurisdiction of Lanthel and Taksha Range and the dominant species recorded are Pinus wallichiana, Quercus semiserrata, Tsuga dumosa, Quercus oxyodon, Magnolia campbellii and Juniperus recurve.

ii. Sub-tropical forest and Warm broad-leaved forest

Such forest types are found mostly in Tingtibi and Taksha range; however, they are also found in Langthel and Nabji range. The dominant species recorded are *Ostodes paniculata*, *Sloanea tomentosa*, *Altingia excels*, *Duabanga grandiflora*, *Syzygium kurzii*, *Termanalia myriocarpa* and *Toona ciliate*.

iii. Evergreen oak forest

These forests are a very characteristic feature of some parts of central Bhutan; they are prominently spread in all of the four ranges. The dominant species recorded are *Quercus lamellose*, *Castanopsis hystrix*, *Quercus glauca* and *Castanopsis tribuloides*.

iv. Warm broad-leaved forest and Chirpine forest

These types of forest are found in all of the four ranges. The dominant species recorded are *Alnus nepaulensis*, *Engelhardia spicata*, *Quercus lanata*, *Schima wallichii*, *Lithocarpus pachyphyllus* and *Pinus roxburghii*.

v. Cypress forest

This type of forest is found in upper catchment of Harachhu and Poekachhu under Taksha range and the dominant species is *Cupressus corneyana*.

vi. Fir Forest

This type of forest is found under Langthel and Taksha range and the dominant species is *Abies densa*.

vii. Rhododendron scrub forest

This type of forest is found under Langthel and Taksha range and the dominant species are *Rhododendron bhutanense* and *Rhododendron aeruginosum*.

2.2.4. Range wise life-form composition of trees & shrubs, ground vegetation

A. Trees & shrubs

The overall life-form composition has a considerable proportion of evergreen trees at 65% followed by conifer trees at 14%, deciduous trees 15%, evergreen shrub at 3%, deciduous shrub at 1.3%, climber at 0.25%, evergreen palm at 0.46%, and grasses and bamboos at 0.19% (Fig. 6).

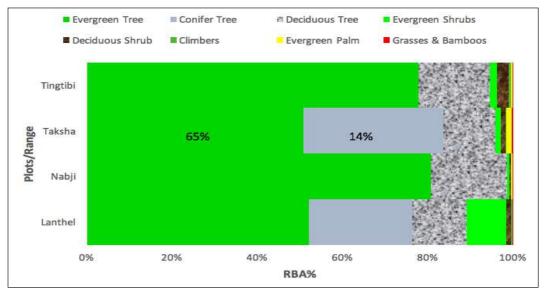


Figure 6: Range wise cover % distribution pattern of eight lifeform group of trees and shrubs.

B. Ground vegetation

The life-form composition of the ground vegetation has a considerable proportion of perennial herb with 51% followed by annual herb at 11%, evergreen shrub 10%, climbers 10%, grasses and bamboos 9 %, deciduous herb 6%, orchids 2% and evergreen palm 1% cover in all four ranges (Fig. 7).

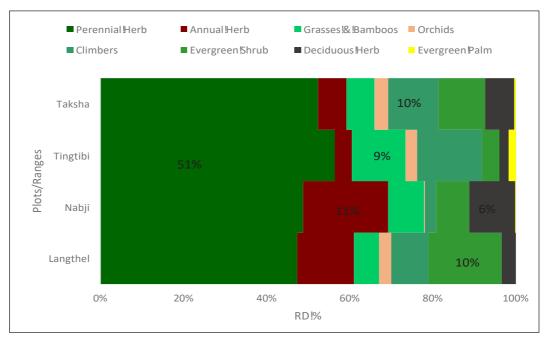


Figure 7: Range wise cover % distribution pattern of eight lifeform group of ground vegetation

A. Epiphytic orchids

Orchids fall under the largest family of flowering plants in the world, Orchidaceae. The epiphytic orchid community recorded inside the park is classified into the following tribes: Arethuseae at 45% followed by Dendrobieae at 37%, Podochileae at 9%, Vandeae at 6%, Malaxideae at 3%, and Cymbidieae and Epidendreae at 1% each (Fig. 8).

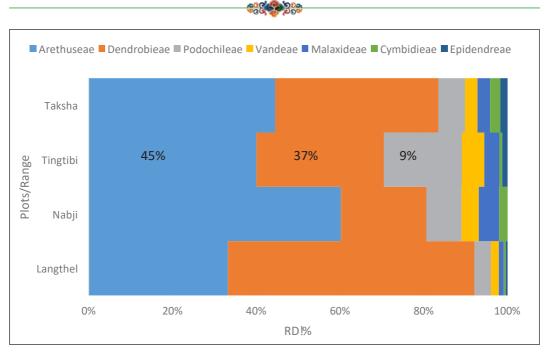


Figure 8: Range wise cover % distribution pattern of epiphyte orchids classified into 7 tribes

B. Forest structural features under each range

A total of seven forest structural features namely: maximum DBH, maximum height, stem density, basal area, species richness, DBH class distribution and Height class distribution was determined as follows:

Ranges	Langthel	Nabji	Taksha	Tingtibi
No. of plots	24	17	25	11
Tree plot size (m^2)	400	400	400	400
Ground veg. plot size (m^2)	4	4	4	4
Max. DBH (cm)	140	260	156	170
Max. Ht (m)	48	42	50	50
Stem density (no)	618	245	446	363
Basel area (m^2)/ha	78.43	72.83	56.17	66.68
Tree Richness (H') highest	2.45	2.08	2.28	2.37

Table 2: Summary of the plots surveyed under each range with mention of plot size and forest structural features

i. DBH class

The forest stand structural features of the park is illustrated by DBH class distribution arranged at an interval of 20 cm with 11 classes as shown below:

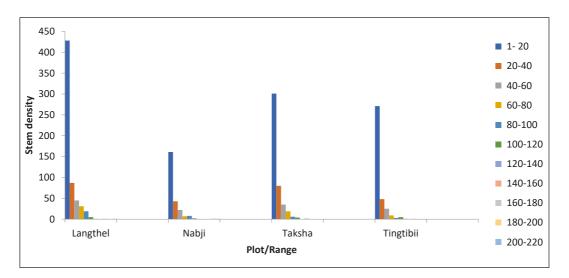


Figure 9: DBH class distribution of trees and shrubs under each range illustrating forest structural features of the park.

ii. Height class

The forest stand structural features of the park is also illustrated by height class distribution arranged at an interval of 5 cm with 8 classes as shown below.

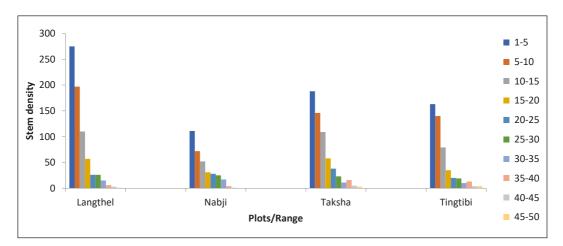


Figure 10: Height class distribution of trees and shrubs under each range illustrating forest structural features of the park.

iii. Species area curve

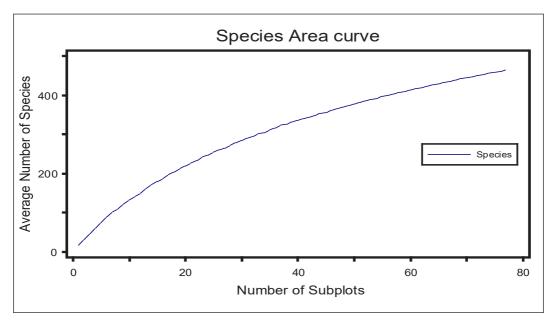


Figure 11: Species area curve of the trees and shrub

Number of species increases upon increasing the sample size. Therefore, the slope of the species area curve graph below showing gentle slope indicate sample size was good enough for recorded number of species diversity in general.

iv. Species dominance curve

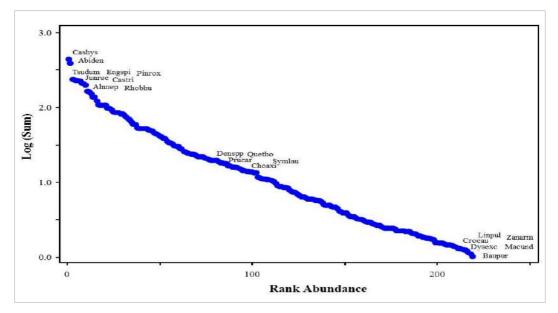


Figure 12: Species dominance curve of trees and shrubs.

The dominance curve showing the pattern of trees and shrubs ranked by abundance based on RBA% from highest to lowest in Jigme Singye Wangchuck National Park and they are *Castanopsis hystrix, Tsuga dumosa, Abies densa, Engelhardia spicata, and Pinus roxburghii.*

Several species are used in traditional medicines, cottage industries, and collected by villagers as food, fodder, fertilizer, and for other livelihoods and commercial purposes.

2.3. Faunal description

Owing to the great altitudinal variation and diverse habitat types, JSWNP holds a wide array of wild faunal diversity. Since the gazettement of national park in 1993, the record of faunal diversity has increased manifolds. For instance, the first conservation management plan for the erstwhile Black Mountain National Park recorded only 19 species of mammals and 154 species of birds in the national park. The second conservation management plan published in 2003 enlisted 22 mammals and 167 birds (JSWNP, 2003). Owing to limited survey of other taxa, the list of many lesser-known taxa was non-existent then. The conservation management plan 2014 recorded 35 species of mammals and 171 species of birds inside the national park. For the first time, the national park also enlisted butterflies recorded inside the national park. Over the last six years, the national park embarked on the inventory of other lesser studied taxa such as herpetofauna, fishes, and small mammals, and conducted the annual monitoring of species such as tiger, which has helped record many other rare and cryptic species which were not recorded in the past. Rapid biodiversity assessment was again conducted in 2019-2020 for the mammals and birds to assess the status of distribution of animals of conservation significances and identify conservation needs for the purpose of conservation management planning. While the record of mammals, birds, herpetofauna, fishes, and butterflies are remarkable, there is still limited information on the diversity of insects and freshwater macroinvertebrates, which also plays a vital role in the ecological processes.

2.3.1. Mammalian Diversity

The rapid biodiversity assessment for mammals in JSWNP was conducted in 40 randomly sampled biodiversity monitoring grids of 4x4 km, spread across the national park. The randomly sampled grids which are representative of the different habitat types across different elevation gradients covered over 640 km², which is about 40% of the total area. A remotely triggered camera trap was installed in the sampled grid cell for photographic record of mammals and trail transect survey was conducted to record the wildlife signs, evidences, and direct sightings, besides recording the conservation threats. A total of 39 camera traps were deployed in the sampled grids in a phase wise manner since 2017-2020, with a shift from low altitude regions of Nabji, Tingtibi, Taksha and Langthel Range during the winters to high altitude regions of Black Mountains during the summers. The camera traps were left in the field from 60-90 days and it yielded a cumulative trap days of 2617 days

and captured as many as 2270 independent captures, thus yielding a photo capture success rate of 0.86 images per trap day. The images were considered independent at the single site when it was photographed after 60 minutes. A total of 22 mammal species were photo captured by the camera traps including seven species of wild felid including the charismatic tiger, thus affirming JSWNP as a hotspot for wild felids. Snow leopard (*Panthera uncia*) was photo captured from the Black Mountain regions for the first time in the national park in 2017. Prey species of the top carnivores recorded in the national park include barking deer (*Muntiacus muntjac*), wild pig (*Sus scrofa*), sambar (*Cervus unicolor*), gaur, Himalayan serow (*Capricornis thar*), Himalayan goral (*Naemorhedus goral*) and musk deer. Other species of conservation concern recorded in the camera traps are red panda, binturong (*Arctictis binturong*), wild dog and Himalayan black bear.

Similarly, mammal evidence survey was conducted along the trail in the sampled grids and a total of 235 transects were laid in 42 sampled grids, covering 117 kms. Each transect was at least 500 meters long and between 5-8 transects were laid in each sampled grid. A total of 306 signs and wildlife evidences belonging to 20 mammal species were recorded along the transects, yielding a sign encounter rate of 2.61 evidences per km. The transect survey revealed that mammal diversity is highest in warm broadleaved forests, followed by cool broadleaved forests, conifers, and finally the alpine habitats (*Table 3*). Of the nine different wildlife evidences including acoustics and direct sightings that were recorded during the survey, and wildlife dropping was the most commonly encountered evidence at 41.6%, followed by tracks and direct sightings. Remains of the body parts accounted the least number of evidences (*Fig.13*). Direct sighting was mostly for primates and squirrels.

Habitat Types	No of species	No of evidences observed	Shannon Diversity Indices H'	Evenness J
Alpine	3	6	0.87	0.79
Conifer	13	45	2.15	0.84
Cool broadleaved forests	20	123	2.31	0.77
Warm broadleaved forests	20	129	2.55	0.85

Table 3: Species diversity indices in different habitats as observed through sign survey

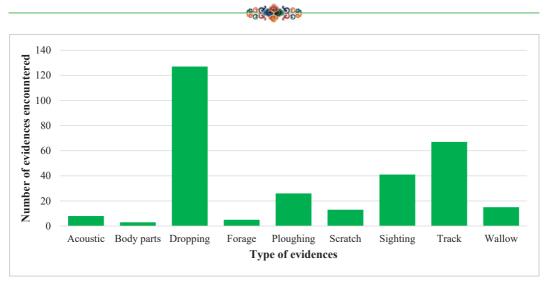


Figure 13: Different wildlife evidences encountered during the transect survey.

The assessment of mammals recorded in the national park affirmed the presence of 55 mammal species (Appendix 2.1), which is an increase by 54% from the 2014 baseline. The checklist is inclusive of 13 species of rodents recorded during the small mammal inventory conducted in 2017 (Dorji, 2017) and the diversity of mammal is spread across seven orders and 23 families. Felidae under the order Carnivora has the highest number of species with eight species followed by Rodentia family of Muridae and Sciuridae with six species each (*Fig. 14*). Fourteen mammal species recorded inside the national park are threatened species falling under the Vulnerable (8 species), Endangered (5 species) and Critically Endangered (1 species) category of the IUCN Red List of Threatened Species and thirteen of them are strictly protected under schedule I species list of the Forests and Nature Conservation Act 1995 (*Table 4*). Except for few opportunistic records, the national park still lacks a proper inventory of bats.

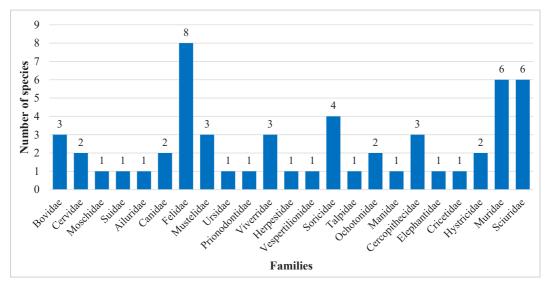


Figure 14: Mammalian species diversity across different families.

SL. No.	Common Name	Family	Scientific Name	IUCN Status*	FNCA 1995 Status
1	Red panda	Ailuridae	Ailurus fulgens	VU	Schedule I
2	Gaur	Bovidae	Bos gaurus	VU	Schedule I
3	Serow	Bovidae	Capricornis thar	NT	Schedule I
4	Dhole	Canidae	Cuon alpinus	EN	NA
5	Golden langur	Cercopithecidae	Trachypithecus geei	EN	Schedule I
6	Sambar	Cervidae	Cervus unicolor	VU	NA
7	Asian elephant	Elephantidae	Elephas maximus	EN	Schedule I
8	Clouded leopard	Felidae	Neofelis nebulosa	VU	Schedule I
9	Common leopard	Felidae	Panthera pardus	VU	Schedule I
10	Tiger	Felidae	Panthera tigris	EN	Schedule I
11	Snow leopard	Felidae	Panthera uncia	VU	Schedule I
12	Leopard cat	Felidae	Prionailurus bengal- ensis	LC	Schedule I
13	Chinese pangolin	Manidae	Manis pentadactyla	CR	Schedule I
14	Musk deer	Moschidae	Moschus leucogaster	EN	Schedule I
15	Himalayan black bear	Ursidae	Ursus thibetanus	VU	Schedule I
16	Binturong/Asian bearcat	Viverridae	Arctictis biturong	VU	NA

Table 4: Species of conservation significance found in JSWNP, being listed under Threatened Category of the IUCN Red List and Schedule I of the FNCA 1995.

**LC*= *Least* Concern, *NT*= *Near* Threatened, *VU*= *Vulnerable*, *EN*=*Endangered*, *CR*= *Critically Endangered*, *NA*= *Not Applicable*

Since the National Tiger Survey of 2015 wherein JSWNP was identified as one of the protected areas rich with tiger density, annual monitoring of tiger was conducted in the national park using remote camera traps. During the monitoring session from 2016-2018, the national park identified eight individual tigers and predicted site use by tigers in JSWNP was 43% with more favorable habitats predicted in low altitude regions of Tingtibi and Nabji Park Range. Among the prey species co-occurring with tiger, wild boar had the highest occupancy of 59% followed by barking deer (56%); serow (55%), gaur (44%); and sambar (43%) (Letro et al. 2019). The predicted habitat use potential of various ungulates along the altitudinal gradient suggests that there is more favorable habitat for tigers as tiger abundance is determined prey availability.

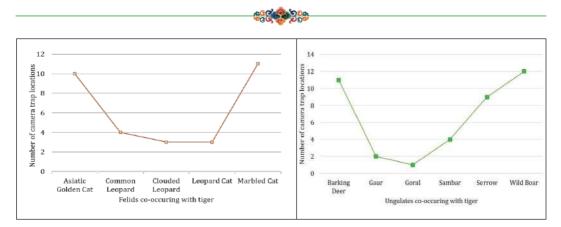


Figure 15: Tiger and co-occurring felids and ungulates as ascertained from camera trap survey.

Threats of concern in the major wildlife habitats include grazing by livestock, harvesting of timber and other non-wood forest produces, infrastructure development, risk of forests fire. Poaching poses direct threat to the species survival (*Fig. 16*). Camera trap images also revealed that there is higher degree of disturbances by humans and livestock with naïve occupancy of humans accounting 0.78 and cattle and stray dogs accounting 0.428 and 0.103 respectively of the 39 camera trap stations.

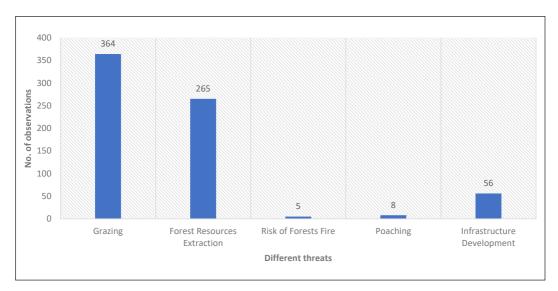


Figure 16: Different intensity of threats as observed during the trail transect survey.

2.3.2. Birds

Birds play a vital role in maintaining the health of ecosystem as they are found occupying different trophic levels in the environment. They play a vital role in controlling pests, acting as pollinators, and dispersal of seeds. Birds being one of the indicator species makes it easier and suitable for the conservationist and climate scientists to investigate the degree of environmental change due to climate change. In its last conservation management plan (2014-2018), JSWNP has recorded only 174 species of birds, many of which were altitudinal migrants.

Rapid assessment of birds in JSWNP was conducted in 45 biodiversity monitoring grids of 4x4 km grid cells using MacKinnon Listing Technique. Different listing technique was followed for different habitats. In most forested habitats, a 20 species list was used while in the alpine and wetlands 10 species list was adopted. A total of 67 species lists were completed with the maximum listing being completed for warm broadleaved forests with 24 lists compiled from 15 biodiversity monitoring grids. Only one grid with wetland as major habitat was covered and three list was completed. As such, a total of 243 species was recorded from the 995 observations made from the entire surveyed area. The survey found that warm broadleaved forests and cool broadleaved forests have the highest species richness and diversity indices, while it was lowest for wetlands and habitats near the settlements (*Table 5*).

Habitat Type	No of species detected	No of detections	Species Diversity H'	Evenness J'
Farmland and settlement	21	83	2.82	0.92
Cool broadleaved forest	146	1157	4.24	0.87
Conifer	20	56	2.63	0.88
Warm broadleaved forest	158	1582	4.39	0.86
Chirpine forest	72	528	3.73	0.88
Wetland	14	28	2.24	0.89
Subalpine	34	190	3.13	0.89

Table 5: Avi-faunal diversity as obtained from the rapid assessment following Mackinnon Listing Technique.

A cumulative listing of birds recorded in JSWNP was conducted building on the earlier baselines and opportunistic records. A total of 324 birds belonging to 72 families have been positively recorded in JSWNP (*Appendix 2.2*) of which nine species falls under the threatened category of the IUCN Red List of Threatened Species (*Table 6*). The critically endangered White-bellied Heron is found inhabiting the river banks of Punatsangchu, Harachu and Kisonachu under jurisdiction of Taksha Park Range office and Mangdechu and Bertichu under Tingtibi Park range office. The White-bellied Heron census 2021 counted 22 birds of which three birds were recorded between Taksha and Kamechhu and another three along the Berti chhu inside JSWNP (RSPN, 2021).

SL. No.	Family	Scientific Name	Common Name	IUCN
1	Accipitridae	Haliaeetus leucoryphus	Palla's Fish Eagle	EN
2	Aroleidae	Ardea insignis	White-bellied Heron	CR
3		Buceros bicornis	Great Hornbill	VU
4	Bucerotidae	Aceros undulatus	Wreathed Hornbill	VU
5		Aceros nipalensis	Rufous-necked Hornbill	VU
6	Cisticolidae	Prinia cinereocapilla	Grey-crowned Prinia	VU
7	Emberizidae	Emberiza rustica	Rustic Bunting	VU
8	Phasianidae	Arborophila mandellii	Chestnut-breasted Partridge	VU
9	Sittidae	Sitta formosa	Beautiful Nuthatch	VU

Table 6: List of threatened species in JSWNP

The national park also harbors three of the four hornbill species found in the country, Great Hornbill (Buceros bicornis), Wreathed hornbill (*Aceros undulatus*), and Rufous-necked Hornbill, all of which are vulnerable in the IUCN Red List of Threatened Species and inhabiting the subtropical and warm broad-leaved forests of the national park.

The rich diversity of the avian fauna is attributed to the presence of diverse ecological zones ranging from the vary sub-tropical forest to the alpine vegetation in the Black Mountain. The different forest types and microclimate provides multiple habitats for the bird species thereby fostering the adaptability and dispersal.

2.3.3. Herpetofauna

JSWNP is also a rich repository of herpetofauna diversity. A survey conducted in 2016-17 recorded the presence of 42 herpetofauna species (*Appendix 2.3*), belonging to 30 genera and 12 families (*Figure 17*). Of these, 32 species belonging to 24 genera and eight families were reptiles and nine species from six genera and four families were amphibians (Tshewang and Letro, 2019).

i. Snakes

Twenty-four species of snakes from 18 genera belonging to four families were recorded in the national park. The family Colubridae was the most diverse with 16 species belonging to 12 genera, whereas Pythonidae appeared to be the least diverse with only one species.

ii. Lizards

Eight species of lizards belonging to three families were recorded in the national park and the family Scincidae was the most diverse with three species and two genera. In the families Gekkonidae and Agamidae, we recorded two species each.

iii. Anurans

A total of nine frog species belonging to six genera and four families were recorded in the national park, of which, Rhacophoridae was the most diverse with three species, followed by Bufonidae, Dicroglossidae, and Ranidae with two species each.

A lone turtle species recorded in the national park, Cuora mouhoti belonging to Geometridae family is listed as endangered in IUCN Red List of Threatened Species. Other threatened species includes the Burmese python *(Python bivitatus)*, and the king cobra *(Ophiophagus Hannah)* both of which are categorized as Vulnerable in the IUCN Red List.

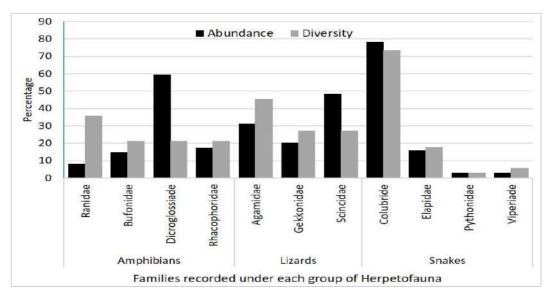


Figure 17: Diversity of Herpetofauna recorded in JSWNP.

Periodic monitoring of these recorded species is vital for its conservation and survey of sites which were not surveyed before are expected to add new record of herpetofauna in the national park. While the national park has many intact habitats, the coming up of numerous developmental activities like hydropower construction, road construction, installation of high-tension electric lines, and the use of fertilizers and pesticides by the park residents are likely to threaten the habitats of herpetofauna. Herpetofauna, especially the snakes face considerable threat from killing by local people on the pretext of local and traditional belief that snakes are fated to be killed.

2.3.4. Fishes

Until recently, the studies related to aquatic biodiversity has been scarcely investigated when compared to the terrestrial biodiversity in Bhutan. Now with the ecological significance of the aquatic biodiversity understood, many conservationists are diving into the field of aquatic science and in particular Ichthyology (study of fishes). Numerous rivers, rivulets and streams flows through the jurisdiction of JSWNP the major rivers being the Mangdechhu flowing from Trongsa to Tingtibi in eastern Park boundary; Punatsangchhu in western part; and Nikachu in the northern part. A total of 16 species of fishes were recorded during the fresh water diversity survey conducted in year 2016 (Dorji, 2016) (*Appendix 2.4*).

Only two species amidst the aforementioned 16 species were found to be threatened as per IUCN Red List. The endangered golden masheer (Tor putitora) also listed in Schedule I species of FNCA was found distributed in Mangdechhu, Bertichu and Harachu confluence. The common carp (*Cyprinus carpio*) which is Vulnerable in the IUCN Red List is found in Adha Lake and Berti Fishery ponds. These 16 species of fishes is little to comprehend the total probable species that can be discovered from the national park as the previous study only covered some of the prominent fishing spots form major rivers; thereby leaving many small streams and rivulets unexplored. As the developmental activities increases with coming years and particularly with hydropower construction, it has become very crucial and imperative to document the proper checklist of fishes and conduct ecological associated studies.

2.3.5. Butterflies

Butterflies are the subject of fascination for conservationists and one of the intensively studied insect groups. Butterflies along with moth falls under same order of Lepidoptera. Asides the beauty, butterflies play a vital role in ecosystem by being central pollinators to many agricultural crops and ecologically functions as a food source to many predators like birds, spiders and lizards. Butterflies are sensitive and responds instantly to trivial changes in the environment thus it is used as indicator species for studying the impacts of habitat and climate change.

JSWNP with presence of numerous habitat types and microclimate conditions, in addition with dedication and passion of foresters has significantly contributed in proving the Park to be one of the prominent and diverse sites in terms of butterfly diversity. Currently, JSWNP holds a total record of 376 species belonging to four families (*Appendix 2.5*). Over the period of seven years (Earlier management plan period: 2014-2018), 237 species were added over the previous list of 139 species. Despite this splendid current list of butterflies, many areas of the park need intensive exploration in order to have a comprehensive checklist.

2.3.6. Dragonflies and Damselflies

A recent survey of Dragonflies and Damselflies in the park recorded 27 species of Dragonflies from 5 families and 15 species of Damselflies from 7 families (*Appendix 2.6*). The survey was a rapid one given less time and resources; therefore, the list would be much longer and the park aims to add to the list during this plan period.

2.4. People and livelihood

For this management plan revision, an extensive socio-economic survey (SES) was conducted in all communities of the park from November to December, 2019. Data was collected through Participatory Rapid Appraisal (PRA), Rapid Rural Appraisal (RRA) and Questionnaire survey. The interview was conducted for both village and sampled households through structured interview using a set of developed questionnaires, consisting of both closed and open-ended questions. A sufficient sample size was surveyed to ensure that the survey result is statistically relevant. Random sampling was used to ensure that the sample is representative of the survey area to avoid bias in the result and ensure that all elements of the population have an equal chance of being interviewed. The Yamane's (1967) method was used to determine the sample size while random sampling using whisky social gathering tool was used to determine which households are to be selected for interview primarily to sidestep biasness. Overall, a total of 470 respondents (203 Male and 267 Female) were sampled to be part of the survey.

2.4.1. Demography and social structure

Of the ten gewogs falling inside JSWNP, seven gewogs have communities residing inside the park's jurisdiction. Three gewogs i.e., Phobji, Chudzom (Dovan) and Phuntenchu have no communities inside the park. Although Phobji gewog does not have permanent settler inside the national park, there are at least eight households who lead semi-nomadic lifestyle, migrating with their yak, cattle and sheep herds along the Black Mountain trails of JSWNP, with their transit huts located in Wangjela, Jari Busa, Yakchu, Khephu, Kilam, Jeddah tsho, Gubjila and Broksa.

Overall, there are 601 households and a total population of 5538 (2601 female and 2937 male) inside Jigme Singye Wangchuck National Park. Sergithang gewog under Tsirang has only seven households falling inside the park's jurisdiction. Gewog wise households and population distribution of the park are summarized in the figures below:

HH & Population information of JSWNP									
Drongkhag	Cower	Total HH		Population					
Dzongkhag	Gewog	ΙΟΙΔΙ ΠΠ	Male	Female	Total				
Zhemgang	Trong	73	461	397	858				
	Korphu	192	863	804	1667				
Trongsa	Langthel	105	401	324	725				
	Tangsibji	85	486	368	854				
Wangdue phodrang	Athang	112	519	574	1093				
Sarpang	Jigmecholing	27	196	123	319				
Tsirang	Sergithang	7	11	11	22				
	Total	601	2937	2601	5538				

Table 7: Gewog wise households and population distribution of the park

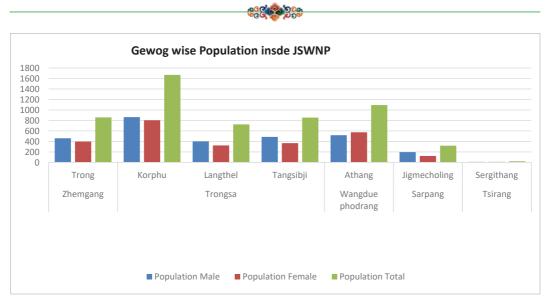


Figure 18: Gewog wise population status in JSWNP obtained from respective Gewog office.

The survey found that overall, 50% of the population inside the park live in their respective communities while the remaining 50% live out of the communities (working in urban areas or studying in schools outside the village). The gewog wise status of population living in and out of communities is as follows;

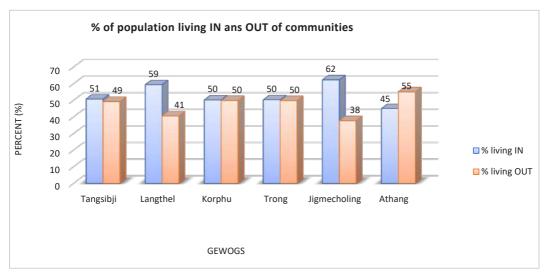


Figure 19: Proportion of population living IN and OUT of the Park

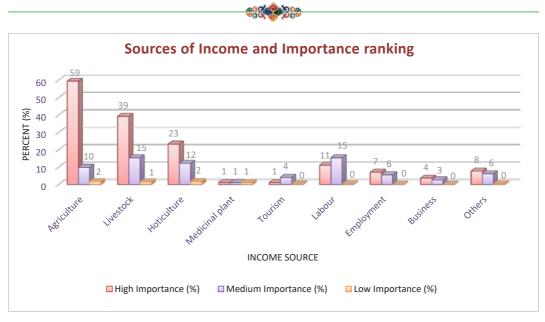


Figure 20: Sources of income and their Importance ranking (total should be 100%).

2.4.3. Agriculture

Agriculture is the main source of livelihood for the people living in JSWNP. Most of the agricultural lands are in lower elevation areas of the park. The most common types of land holding are Chhuzhing (wetlands), Kamzhing (dry-lands), Orchard and Tsesa (vegetable garden). The overall average land holding in the park stands to be 0.99 acre of wetland per household, 1.422 acres of dryland per household, 0.12 acres of Tsesa per household and 0.32 acres of orchard per household. The distribution of each land type under different gewogs is summarized in the table below;

Land Holding in JSWNP								
Gewog	Chuzhing (Acre)	Kamzhing (Acre)	Tsesa (Acre)	Orchard (Acre)				
Tangsibji	110.3	142.4	18.9	5.1				
Langthel	42.5	26.9	6.5	26.5				
Korphu	106.8	174.0	19.0	100.9				
Trong	76.0	218.0	14.4	29.1				
Jigmecholing	11.29	83.18	1.89	26.6				
Athang	250.2	210.3	20.7	4.9				
TOTAL	597.1	854.8	81.5	193.1				

Table 8: Gewog wise land holding in JSWNP (obtained from respective gewog records)

People grow various cereals, vegetables, fruits and cash crops. Common cereals grown are paddy, wheat, barley, maize, buckwheat and millet. Mustard is grown as a source of oil in certain parts such as Chendebji village, Samthang and Rukha communities. In hotter areas such as Athang, Langthel and Trong gewogs people grow some fruits such as mandarin, mango, jack fruit, plum, peach and walnut as source of income. Cardamom is cultivated by most of the communities as cash crop. Chendebji village also grows potatoes as a cash crop.

The challenges facing farming are many. Despite the park's effort to mitigate the challenges, all communities still face one or more of the constraints hindering agricultural productivity. Crop damage by wildlife still stands out to be the biggest constraint to farming in the national park. During the past management plan period, the park has supported various mitigation measures such as electric/ solar fencing, supply of improved varieties of crop and livestock and alternative livelihood options; however, the cases of human-wildlife conflict still stand out. Other constraints to farming are pest and diseases, insufficient irrigation, insufficient land, shortage of labour, poor soil fertility, poor access to market, insufficient funds to invest, erratic climatic conditions, unavailability of quality seeds and soil erosions. The severity of each of these constraints is depicted in the figure below;

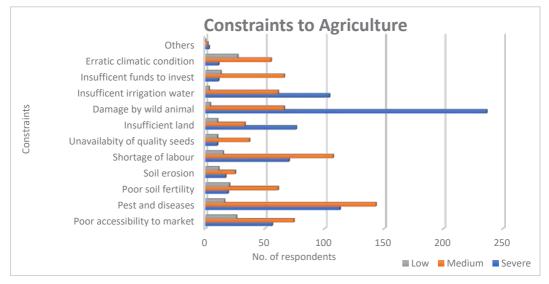
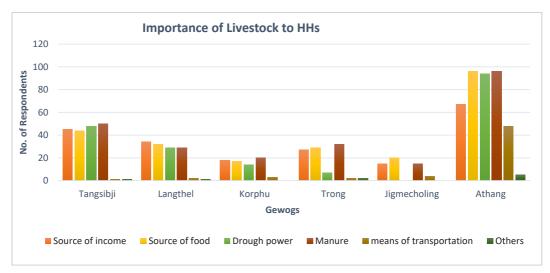


Figure 21: Constraints to agriculture and their severity in JSWNP.

2.4.4. Livestock

Livestock rearing is the second most important income source and livelihood option. Common livestock reared in the park are cattle, yak, horse, poultry, pig, goat and sheep. While cattle are reared across the communities in all gewogs, yak herding is not a common practice among the permanent settlers of the park. Some yak herding families of Phobjikha herd their yaks along the trails leading from Phobjikha valley towards the Black Mountain range. This is an ancient trail used for yak herding since ancient times. The people transit



from one location to another depending upon the season, herding the yaks in the park's area for over 8 months every year. Though most of the communities in the park are connected with farm roads, people still keep horses in communities such as Korphu, Tangsibji, Athang and Langthel. However, the number of horses/ mules has decreased over the past decade and is expected to further decrease in coming years. Poultry is gaining popularity in various communities, reared mainly for egg and meat. Goats are reared in communities of Tangsibji, Korphu, Athang and Reeti and similarly, piggery is common in Tangsibji, Athang and Korphu communities. "Others" category includes other domestic animals such as yak, sheep, cat, and dog. The gewog wise distribution of livestock is depicted in the table below;

Livestock Holding in JSWNP								
Gewog	Horse	Cattle	Goat	Poultry	Pig	Others		
Tangsibji	62	1770	22	1781	151	74		
Langthel	26	920	1	600	0	38		
Korphu	67	2106	22	1958	151	81		
Trong	2	129	0	309	0	3		
Jigmecholing	16	195	9	159	0	0		
Athang	58	1190	21	1237	151	50		
TOTAL	231	6310	75	6044	453	246		

Table 9: Gewog-wise Livestock population in JSWNP (obtained through SES)

The importance of livestock to the communities are: source of income, source of food, drought power, manure and means of transportation among others. The weightage to each of these varies among the communities as shown in the figure below;

Figure 22: Importance of Livestock

The grazing areas for livestocks are mainly forest and fallow agriculture fields in communities of Athang, Tangsibji, Korphu, Langthel and Jigmechholing gewogs. Tethered and stall feeding is gaining popularity in communities of Tangsibji, Athang, Langthel and Trong gewogs due to an increase in the number of improved breeds of cattle. Some households in Tangsibji, Trong and Athang gewogs also have improved pastures to feed their livestock. The following figure explains the feeding habit of livestock in different gewogs;

Figure 23: Gewog-wise livestock feeding habits in JSWNP

The survey asked the respondents whether or not they owned pastureland and if they intended to develop new pastureland if given a choice. Their responses are summarized in the figure below;

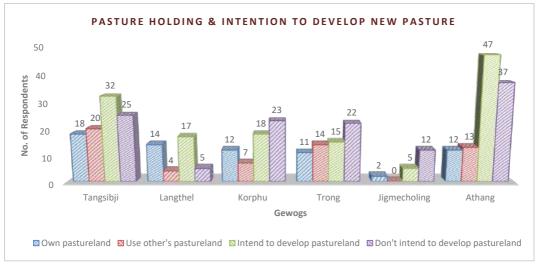


Figure 24: Pasture holding and intention to develop new pastures.

Not so different from farming, the challenges to livestock rearing are many; most of which are common between the two. Like in farming, loss to wildlife is the most severe constraint facing livestock rearing. Livestock depredation and crop damage are the two main facets of human-wildlife conflict in the national park. Other challenges to livestock rearing are insufficient fodder, insufficient grazing land, diseases, poor quality/ local breeds, parasites and poor veterinary & extension services. These are depicted in the figure below;

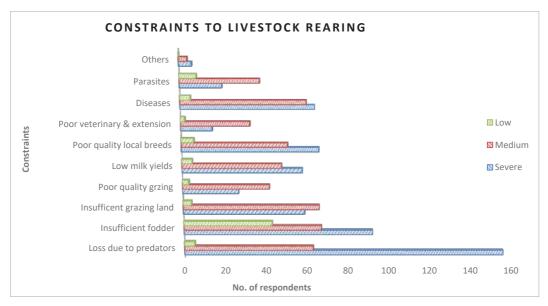


Figure 25: Constraints to Livestock rearing

2.4.5. Human-Wildlife Conflicts (HWC)

The Park has human settlements in the multiple-use zones, who are primarily dependent on agriculture and livestock rearing. Since these settlements are surrounded by forests, constant interaction between wildlife and the human communities become inevitable, leading to various conflicts between human and wildlife. The main types of conflicts faced in the national park are: 1. Crop damage, 2. Livestock depredation and, 3. Human-human conflict due to wildlife (this is another dimension of HWC where two or more group of people clash in the varying interest of wildlife, such as the conflict between conservationists and poachers).

i. Crop damage

Crop damage by wildlife is widespread among all the settlements in the park. Wildlife species responsible for crop raiding are the wild pig, sambar deer, barking deer, monkeys (mainly Assamese macaque and on rare occasions, Golden langurs), Asiatic black bear and porcupine. Tangsibji gewog has a major conflict with monkeys, while other gewogs suffer from damage by wild pigs, sambar deer, barking deer and porcupines.

Figure 26: Gewog-wise proportion of crop depredation against different wild animal species.

Species-wise, wild pigs dominate this category of conflict across the gewogs whereby 47% of all conflicts related to crop damage across the settlements in the park is caused by wild pigs; however, in Tangsibji gewog monkey are found to cause the maximum crop damage. Damage by sambar deer, barking deer and porcupine is also widespread across the gewogs. The Asiatic black bear was reported to cause crop damage in Trong, Korphu, Langthel and Jigmechholing gewogs.

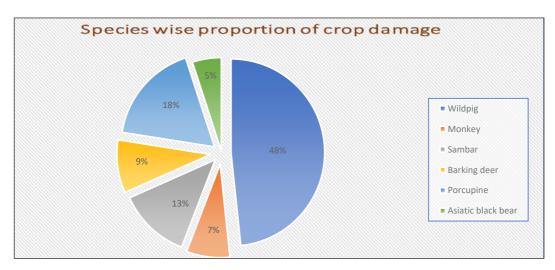


Figure 27: Species-wise proportion of crop damage.

Crop wise, the maximum damage was reported to be done to paddy (45%), followed by barley (34%), cash crops (8%) and wheat (5%). Other crops damaged are sweet buckwheat, bitter buckwheat, vegetables, mustard and millet. The proportions of crop damage in the national park are depicted in the graph below;

ii. Livestock depredation

Livestock depredation by wildlife is also widespread among all the gewogs having human settlements in the national park. The survey found that this form of HWC is most rampant in Langthel gewog where 52% of the respondents holding livestock reported livestock depredation by wildlife followed by Athang (40%), Tangsibji (35%), Trong (33%), Jigmechholing (25%) and Korphu (18%).



Figure 28: Crop type wise damage proportion

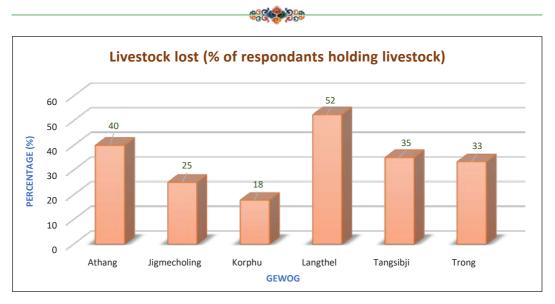


Figure 29: Percentage of respondents who lost livestock to predators

Livestock depredation trend: overall, 37% of the respondents said that livestock depredation is increasing in their communities, while 29% said it has remained the same over the years, 26% said it is decreasing and the remaining 8% of the respondents had no idea about the trend.

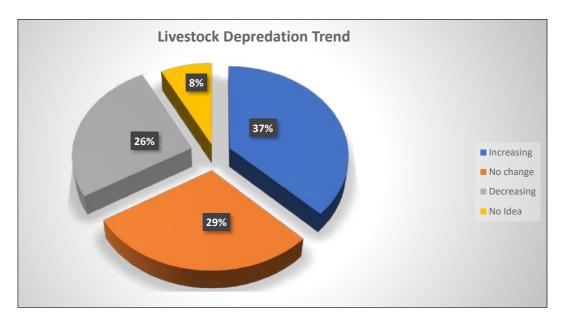


Figure 30: Livestock depredation trend in JSWNP

iii. Human-Tiger conflict

In 2017 a study to assess the human-tiger conflict in the park was conducted. The result showed that the highest risk conflict hotspot was in Nabji Range, followed by Tingtibi Range, Langthel Range, and Taksha Range respectively (Fig. 30). Determined by the distance of kill sites from the nearest settlements (probable risk of 0 to 5 kilometres from the nearest settlements), the results showed that Korphu gewog (villages of Korphu, Nabji and Nimshong) in Nabji Range has the highest conflict risk of 368 hh (50.2%), followed by 120 hh (16.4%) in Tangsibji gewog (Chendebji & Kela) in Chendebji beat, 109 hh (14.9%) in Langthel gewog (Jangbi, Prumzur, Wangling, Beyzam, Ngormay) in Langthel Range, 69 hh (9.4%) in Adha gewog (Rukha, Lawa, Nashina), and 67 hh (9.4%) in Trong gewog (Tama & Berti) in Tingtibi Range. Of the 1,095 households living inside the park, 733 hh (66.9%) falls in the more prone to the conflict zone of 0 to 5 kilometers and 362 hh (33.1%) in low risk of more than 5 kilometers from the kill sites (Dorji, 2017). The following figure shows tiger conflict hotspot areas in the national park;

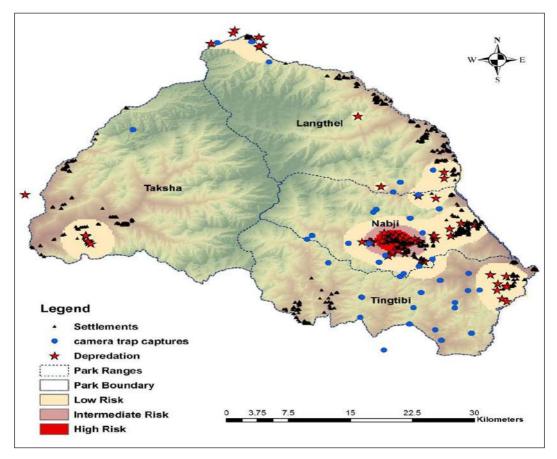


Figure 31: Human-Tiger Conflice Hotspots in JSWNP

iv. HWC Hotspot Mapping

As a part of the nationwide Human Wildlife Hotspot Mapping exercise, a HWC hotspot mapping of the park was carried out in 2021 based on the existing data on livestock depredation, crop raiding and loss of human lives to wildlife for the past eight years (2014 to 2021). The result showed that HWC hotspots lies along the periphery of the park where human settlements are spread. Majority of the communities under all four ranges of the park showed high occurrence of HWC. The overall depiction of HWC hotspots in the park is represented in the figure below;

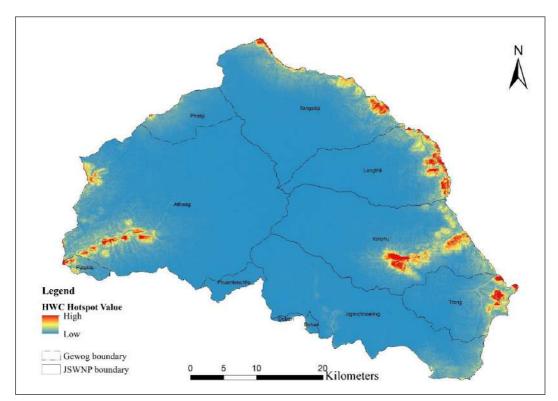


Figure 32: HWC Hotspot map of JSWNP, 2021.

2.5. Forest Resource Area

The Park residents are dependent on natural resources such as timber, firewood, poles and non-timber forest produces (NTFPs) for their day-to-day livelihoods and to supplement income generation besides agriculture and livestock rearing. To meet these requirements, Community Forests have been established in most of the communities; there are eighteen CFs and two NWFP management groups in the park. In the recent times, it was observed that the resources were also allocated from the forests outside management regimes; therefore, LFMPs have been prepared for all gewogs with settlements in the park in order to manage the resources from such forests. The Park has no Forest Management Units (FMUs).

2.5.1. Community Forests (CFs)

The Park has a total of eighteen CFs spread across the communities inside the park. Each of these CFs is managed under management plans and by Community Forest Management Groups (CFMGs). The following table shows list of CFs in the park, location, year of establishment and management plan plan periods.

SL No	Name of CF	Village	Gewog	Dzongkhag	Establishment year	1st Management Plan period	2 nd MP Reviewed plan period	MP next review period (FY)
-	Nabji Community Forest	Nabji			2009	July 2009-July 2019	July 2019 - June 2029	2028 - 2029
2	Korphu Community Forest	Korphu	Korphu		2010	August 2010- August 2020	July 2020 - June 2030	2029 - 2030
	Nimshong Community Forest	Nimshong			2017	September 2017-August 2027		2026 - 2027
ŝ	Kella Chithuen Commu- nity Forest	Kella	T		2013	May 2013 - April 2023	July 2019 - June 2029	2028 - 2029
4	Cherub Community Forest	Malling & Langbro	Iangsipi		2013	May 2013 - April 2023	July 2019 - June 2029	2028 -2029
5	Wangling Community Forest	Wangling		8601011	2015	September 2015 - August 2025		2024 - 2025
9	Jangbee Community Forest	Jangbee			2013	August2013-July 2023		2022 - 2023
7	Beyzam Community Forest	Beyzam	Langthel		2013	August 2013-July 2023		2022 - 2023
6	Ngormey Community Forest	Ngormey			2017	September 2017 - August 2027		2026 - 2027
10	Monpa Selwai Yoezer Tshogpa	Jangbee			2018	May 2018-April 2028		2027 - 2028

27	26	26	26	30	27	28	27
2026 - 2027	2025-2026	2025-2026	2025-2026	2029-2030	2026-2027	2027-2028	2026-2027
				July 2020 - June 2030			2021-2022
July 2017 - June 2027	July 2016 - June 2026	October 2016 - September 2026	Sept 2016- August 2026	June 2010 - May 2020	Nov.2017 - Octo- ber 2027	May 2018-May 2028	July 2017 - June 2020
2017	2016	2016	2016	2010	2018	2018	2009
Zhemgang					Wangdue		Wangdue
Trong				Athang			Adha
Berti	Tama	Rukha	Lawa	Samthang	Lamga	Migtana	Rukha
Berti, Phendheyling Com- munity Forest	Pema Choeling Commu- nity Forest	Olep Community Forest	Yoesum Tashi Communi- ty Forest	Samthang Community Forest	Shayuep Community Forest	Migtana Pindru Commu- nity Forest	Rukha Nagtshel Thuenk- en Tshogpa
	12	13	14	15	16	17	18

Table 10: Details of Community Forests in JSWNP.

2.5.2. Non-Wood Forest Produce Management Groups (NWFP-MGs)

The Park has two NWFP-MGs namely Rukha Naktshel Thuenken Tshokpa (RNTT) and Monpa Selwai Yoezer Tshogpa (MSYT). RNTT was established in 2009 and belongs to the villages of Lawa, Lamga, Rukha, Migtana and Samthang village under Athang gewog, Wangdue Phodrang with 70 HH members. Besides cane and bamboo, the group also manages about five different types of NWFPs viz. *Terminalia chebula, Phyllanthus emblica, Plectocomia himalayana, Rubia cordifolia and Piper betleoides* within the designated areas of their communities. Its first management plan was from July 2017 to June 2020 and the second management plan is currently being prepared after thorough resource assessment (plan period of 2022 to 2016).

The MYST was established in 2007 for the Monpa community of Jangbi, Phrumzur and Wangling, benefitting 58 households under Langthel gewog, Trongsa. It was initially established as a NWFP management group, however, in 2018, the same was converted to community forest with same name and same members. Its current management plan has been implemented since May 2018 and will expire in April 2028.

Both of these groups manage cane and bamboo as major NWFP and produce products such as baskets, *Bichha* and other related handicrafts. Trainings on product development and marketing of finished products have been provided to these groups in regular intervals.

2.5.3. Local Forest Management Areas

From 2017 to 2020 seven LFMPs have been prepared for all of the seven gewogs with settlements in the park jurisdiction. The resource availability, demand-supply analysis and allocation modality for next ten years under each of these LFMP areas are compiled in the last chapter of this management plan, which will form the strict basis for resource allocation during the plan period. Although the plans were prepared starting from 2017, all LFMPs will be implemented uniformly from 2022 to 2031, which is the implementation period of this management plan. The following table summarizes all the LFMPs of JSWNP;

SI No	Gewogs	Dzongkhag	LFMP prepared	AAC (m ³)	Implementation period
1	Trong	Zhemgang	2020	2460	2022-2031
2	Jigmechholing	Sarpang	2019	3538	2022-2031
4	Korphu	Trongsa	2017	2817	2022-2031
5	Langthel	Trongsa	2020	4868	2022-2031
6	Tangsibji	Trongsa	2020	343	2022-2031
7	Athang	Wangdue	2018	3075	2022-2031
8	Sergithang	Tsirang	2019	228	2022-2031

Table 11: Details of LFMPs in JSWNP

2.6. Administration, service delivery and park infrastructure

The Park has its headquarter at Tshangkha, under Tangsibji gewog, Trongsa. It is located below east-west national highway, below the Tshangkha Central School. At the headquarter, besides the park head office, there is a visitor information center (VIC), an Orchidarium, CFO's quarter and staff quarters to accommodate six families. The park heaquarter oversees the overall functioning of the national park and park range offices, and reports to the department headquarter at Thimphu. Chief Forestry Officer (CFO) heads the park and is assisted by Administration and Accounts sections in overseeing the overall functioning of the park. Four functionsal sections under the CFO are Nature Conservation Section (NCS), Social Forestry and Extension Section (SFES), Forest Protection and Enforcement Section (FPES) and Forest Resource Management Section (FRMS), who report to respective functional divisions at the head quarter through the CFO. The field activities are implemented through four range offices and two beat offices as depicted in the park's organogram (*Fig. 33*).

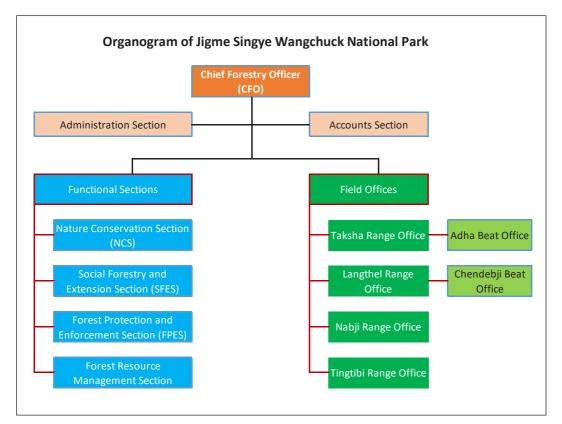


Figure 33: Organogram of JSWNP

Various communities spread across the national park are catered through the park's four administrative ranges, with range offices located at Taksha (Taksha Park Range), Tongtongphey (Langthel Park Range), Tingtibi (Tingtibi Park Range) and Nabji (Nabji Park Range). There are two Beat offices (erstwhile known as Deputy Park range offices) at Adha and Chendebji under Taksha and Langthel range, respectively.

Taksha Range Office oversees the Athang *gewog* of Wandiphodrang dzongkhag. Communities of Adha such as Lopokha, Lhomtshokha, Phaktakha, Gemdro, Bartsa, Kago, Morakha and Gentsawa are catered by the Beat office at Adha while the communities of Rukha, Migtena, Lawa, Lamga, Dayu, Kashacjeko, Samthang, harachu and Satshamla are catered by Taksha range office.

Langthel Range Office oversees Langthel and Tangsibiji *gewogs* of the Trongsa dzongkhag partially. Communities of Langthel gewog, such as Jangbi, Phrummzur, Ngormay, Shenling, Baseling and Nangnang are catered from the range office at Tongtophey while the communities of Tangsibji *gewog* such as Kella, Dimba and Chendebji are catered through the beat office in Chendebji. As such, the Chendebji village falls outside the park area; however, their agricultural fields fall inside the park area.

Tingtibi Range Office covers the Trong *gewog* under Zhemgang dzongkhag. There are three villages, Berti, Takabe and Tama inside the national park. These communities are catered by the range office located in Tingtibi town. Nabji Range Office covers Korphu *gewog* of Trongsa and Jigmecholing gewog of Sarpang.

Human resource wise, the Park has 31 technical (Forestry) staff and 8 supporting staff. The headquarter has overall strength of 11 staff (1 Chief Forestry Officer, 3 Forestry Officers, 2 Senior Rangers, 1 Administrative Assistant, 1 Accounts Assistant, 1 Driver, 1 Night Guard and 1 Caretaker). Taksha range has 3 Rangers, 1 Forester and 1 Caretaker. Langhtel range has 2 Rangers, 4 Foresters and 1 Caretaker. Tingtibi range has 3 Rangers and 1 Forester. Nabji range has 2 Rangers, 3 Foresters and 1 Caretaker. Adha beat office has only 1 Forester (1 Ranger is on study leave since July 2021). And, Chendebji beat office has 2 Rangers and 2 Foresters.

PART 3: SUMMARY REVIEW OF THE PAST PLAN

3.1. Assessment of previous plan (major outputs from the objectives of previous plan)

During the past management plan period, apart from the regular RGoB financing, the park also implemented conservation projects funded by different donor agencies such as WWF Bhutan and GEF, due to which a lot of conservation outputs were achieved. The major achievements during the period are summarized under the following six headings;

3.1.1. Forest protection and law enforcement

• SMART patrolling

JSWNP was the second protected area to start Spatial Monitoring and Reporting Tool (SMART) program in the country after RMNP. After its start, the SMART patrolling has only improved and strengthened in the national park and enhanced the conservation outputs to new heights. During the past management plan period, the areas of the park that was previously not traversed were explored and brought within the purview of SMART coverage. The parks patrolling teams have often apprehended poachers and other offenders, located and destroyed snares and traps set for wildlife including birds and ambushed poacher teams in the national park areas. A patrolling route guide was also developed for exclusive use by park officials which has helped guide the new officials in performing the patrols.

3.1.2. Forest resources management

• LFMP

The Local Forest Management Planning (LFMP) was started in the national park in 2017 and completed in 2020. All of the seven gewogs having human settlements in the park have been covered under LFMPs.

• Community Forests (CF)

Twelve new Community Forest were established between 2013 and 2018 in different locations in five *gewogs*. Two in Tangsibji *gewog*, three in Langthel *gewog*, one in Korphu *gewog*, two in Trong *gewog* and four in Athang *gewog*. Today, the park has a total of 18 CFs. Two Community Forest management plan were revised during the 12 FYP. The two CFs of Kella were revised in the middle of their earlier management plan due as the previous plan included areas that were far flung and not accessible to the communities, especially the resources such as firewood and poles. During the revision, the areas were revised and made more accessible to the benefitting communities. Awareness meeting, certification and record keeping training to CFMGs of Olep, Yeosum Tashi and Samthang community Forests were conductedduring the past plan period. CF awareness meeting was also

conducted at Migtina from in 2017 for two new CFs: Olep and Yeosum Tashi CF. The Community Forest Management Group (CFMG) of Langthel and Tangsibji gewog under Langthel park range were also trained on various aspect of record keeping pertaining to CF management from in 2018.

Non-Wood Forest Product

The management plan of NWFP group, Rukha Naktshel Thuenken Tshokpa (RNTT) was revised in May 2017 for three years, till May 2020. Hands on training to NRTT members for manufacturing handicraft products (*Zem*) was organized in 2018. The training was organized to enhance the interest of the participants for handicraft production, improve the quality of product, maintain consistency in the quality of product to overcome market competition and sustenance, and to examine the cost analysis for producing *Zem* for ensuring the profit or loss.

• Initiatives to reduce dependency on Natural Resources

In order to reduce demand on fuel wood by the park residents the park management supported 8 numbers of new biogas plants construction and repair of 7 units of old biogas in in Athang *gewog* in collaboration with Dzongkhag livestock office, Wangduephodrang in 2016-17 FY. Another 4 units of biogas plant constructed in Reti village in 2017-18 FY.

The park management also supplied 20 numbers of 10-liter electric rice cooker to 8 schools/ institutions, five lakhangs and three Dratsangs/ Shedras during FY 2015-16. Another 30 numbers of 10-litre Rice cookers were supplied to schools and institutions and Lakhangs during FY 2017-18. MoU was signed between the park management and the institutions and community Lakhangs to reduce the use of firewood.

3.1.3. Research and monitoring

Research

During the past plan period, various research activities were carried out, some of the prominent ones are as listed below;

- ✓ Herpeto-fauna survey was conducted in the park, recording the presence of 16 snakes, 3 lizards, 2 geckos, 2 toads and 8 frog species.
- ✓ Habitat study for Satyr tragopan was successfully completed.
- ✓ Himalayan monal habitat and conservation threats assessment was carried out in 2018.
- ✓ Musk deer survey was conducted in the national park. We have now ascertained the preliminary Extent of Occurrence (EOO) of musk deer in the national park with an area of 413.19 sq.km (Dorji, 2013).

- ✓ Survey on butterflies of JSWNP has been completed and 174 species of butterflies in five different families have been recorded while 30 more specimens are to be identified.
- ✓ A study to assess the status, conflict and conservation aspects of Assamese macaque in JSWNP has been completed.
- ✓ HWC hotspots mapping, focusing on Human-Tiger conflict has been carried out in the park, whereby Nabji and Korphu are found to be the most vulnerable areas, prone to conflict with tigers (Dorji, 2017).
- ✓ Assessment of White-bellied heron habitat and conservation threats in Harachu was carried out in 2018.
- ✓ Field works for species listing of small mammals in JSWNP has been carried out and 12 species of small mammals have been recorded in the first phase.
- ✓ A comparative study of nesting and feeding behaviors of rufous-necked hornbill (RNH) and great hornbills was conducted in 2017 (Dorji, 2018).
- ✓ An inventory and assessment of Invasive Alien Plant Species (IAPS) in Jigme Singye Wangchuck National Park was carried out in 2018.
- ✓ An inventory to list the diversity of Orchids in the park was completed in 2016. An orchidarium was also established at the park headquarter, Tshangkha.

• Tiger monitoring

In order to monitor the individual tigers recorded during the national tiger survey in 2015, regular tiger monitoring was carried out during the past management plan period with funding supports from WWF-UK. Entire Park area was covered for the monitoring, which was carried out phase wise due to lack of enough camera traps. Apart from tiger images, various other wildlife species area also captured and monitored by the monitoring exercise. Snow leopard was captured for the first time in 2017 in the camera traps set for monitoring tigers (Letro et al. 2021).

3.1.4. Human wildlife conflict management

• Electric fencings

In JSWNP, solar fencing was first introduced as an ICDP intervention in the year 2014 at in Jangbi village under Langthel gewog, Trongsa on a trial basis. With 100% crop harvest from the trial area in the following year encouraged solar fencing in other locations. The park management supported electric fencing for 62 kilometers of agriculture fields in all the five gewogs falling under JSWNP from 2014 to till 2018. Most of the places like Adha, Rukha, Jangbi & Chendebji are totally covered by solar fencing supplied from the park. 419.27 acres of agricultural field (Wetland= 233.95Acre, Dryland= 185.31Acre.) in 43 locations of seven Gewogs under JSWNP, viz. Tangsibji, Langthel, Korphu, Trong, Jigmichholing, Phuentengchu & Athang benefitting around 366 households were protected from wildlife damage through electric fencing during past plan period.

• Improved cattle breeds

Twenty-two number of Jersey cows were given to the community of Tama under Trong gewog of Zhemgang, which falls under Tingtibi range of JSWNP. Stall feeding of these cattle was encouraged. The recipients of these improved breeds agreed to give back the first female calf born by the cow to the park so that these could be supplied to other households. The main objective of the initiative is to reduce the number of livestock holding in the community while still yielding sufficient livestock products, and also to reduce grazing pressure in the forests. This also reduces the livestock depredation cases as a smaller number of livestock go to the forests for grazing.

• Cardamom saplings distribution

In order to provide alternative source of income, a total of 94,400 cardamom saplings were supplied to various communities within the park. 35,400 saplings were supplied in 2017 and 59,000 saplings in 2018. The main goal was to reduce pressure on forest by reducing heavy dependency on natural resources for their livelihood. The scheme has benefitted 133 households in total.

3.1.5. Preservation of cultural and religious sites

Considering the great cultural and religious significance in the national park, a number of initiatives were taken to conserve and promote such values. All cultural sites within the national park have been mapped with a brief background on each site (*Fig. 34*). The indigenous Monpa and Olep communities in Jangbi, Phrumzur, Rukha and Reeti were given major focus to conserve the unique cultural values. The park celebrated the National Day of 2016 in Jangbi to spread awareness about the unique Monpa culture. Similarly, support was given to Singye Namgyel Community Primary School in Monpa community of Rukha and Migtena for Social Forestry Day celebration on 2nd June, 2017. The ancient trail from Reeti to Nabji to Kudra to Jangbi holds great religious value as the trail was traversed by Guru Rinpoche during his visit to Bhutan in 7th century AD. Based on such significance and site evidences, the park promoted the tourism activity along the trail. A statue of Guru Rinpoche was installed in Kudra village and in Reeti Nye during the past plan period. Construction of Chhamkhang in Nabji lhakhang and conservation of monuments at Korphu lhakahng was carried out during the period as well.

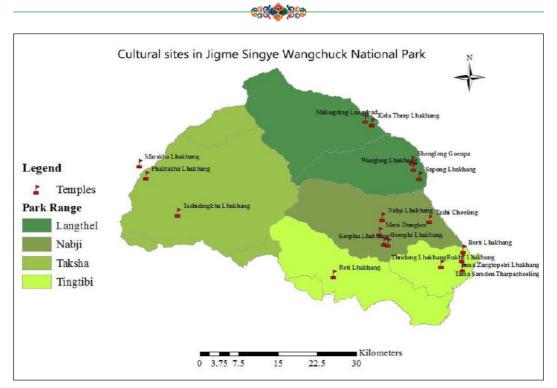


Figure 34: Map showing cultural sites in JSWNP

3.1.6. Strengthening of institutional capacity

• Infrastructure

- ✓ A 3-units staff quarter was constructed in Taksha range in 2017.
- ✓ A 2-storey building housing visitor information center (VIC) and guest rooms was constructed at the headquarter in 2018.

• Human resource development/ Trainings

Various capacity building trainings, tours and study programs were conducted during the plan period. Some of the prominent ones are as follows;

- ✓ In 2015, a total of eight staff including the Chief Forestry Officer of JSWNP went for study tour to Bangkok to study the community-based ecotourism programs. Similarly, a total of 7 community leaders were sent to Bangkok to study communitybased ecotourism in 2016. Also in Bangkok, short-term wildlife/ protected area management tour was organized for a total of 18 staffs for the duration of 5 days. During the tour our foresters observed and learned various aspects of protected area management, community-based ecotourism development and management in protected areas and also conservation activities undertaken by the Department of National Parks, Thailand.
- ✓ Advance office and financial management training course in Philippines was attended by the accountant of the park.

- ✓ Training on basics of GIS was delivered to 21 park field staffs through the expertise of GIS Officer, WWF Bhutan Program in 2016. The Park rangers are now applying the GIS knowledge in their day-to-day field activities, in producing relevant maps without having to rely on others.
- ✓ SMART Patrolling Enforcement trainings have beenconducted by the park on yearly basis. The SMART focal of the park attended SMART Connect Workshop in Cambodia from May 29th to June 2nd 2017 to enhance efficiency and transform the SMART Connect program.
- ✓ The In-charge of Research and Monitoring Section of the park attended the Basic Statistical Concepts and Current Method of Designing Data Collection and Analyzing Data Relevant to Wildlife Research training course from 27th December to 10th January 2018 at Biodiversity Conservation Society Sarawak, Malaysia. The program was arranged to build in-house capacity of staff to cater the research needs of the park and also act as a training of trainers to conduct in house training.
- ✓ The In-charge of Research and Monitoring Section attended 7th International Hornbill Conference at Kuching, Malaysia from 16th to 18th May 2016 as guest speaker. The park's research output on hornbills was presented during the conference.
- ✓ The watershed focal of the park attended a two-weeks long springshed management training at ICIMOD in Nepal in 2018.
- ✓ Voluntary Forest Fire Management Groups (FFMG) have been formed under Taksha range, which is the most fire-prone area of the national park.
- ✓ Cane and bamboo management plan has been developed and operationalized for Jangbi and reviewed for Athang. Products development and value addition training was conducted for the people of Lawa and Lamga and the marketing strategy have been developed.

3.1.7. METT+ Assessment

An assessment of the management effectiveness of JSWNP was done in 2015 and 2016 focusing on the past five years using Bhutan METT+. The average score of JSWNP was 57.7% which is above global standard of 53% (as per global average scores around the world was 53% in the analysis of 2010). Similarly, second METT+ assessment of the park was carried out in 2021 in which the park achieved an overall score of 66.0% which is an increase by 8.3%.

3.1.8. CA|TS certification

Conservation Assured; Tiger Standards (CA|TS) is a set of 17 minimum elements with associated standards and criteria for effective management of tiger conservation areas. JSWNP, along with RMNP and JDNP underwent a rigorous process of CA|TS assessment in 2018-19, and achieved certification as a CA|TS Approved site in 2019. Therefore, JSWNP is one of the two CA|TS sites in Bhutan (other one is RMNP).

3.1.9. Water sources mapping

An assessment to map and assess the status of all the water sources in the park was carried out in 2020. 82 water sources were recorded during the survey, out of which 77 are from within the areas of Jigme Singye Wangchuck National Park and remaining five from outside the park area (from the communities of Bartsa, Gemdro and Morakha in Adha that are catered in service by the park despite falling outside the park's jurisdiction).

Maximum number of water sources (n=35) was recorded from Athang gewog, followed by Trong (n=15). Korphu (n=12), Tangsibji (n=11) and Langthel (n=9). The study found that overall, 45% of the water sources in the park were reported to be drying while remaining 55% had no change as compared to past. No dried-up water source was listed in the survey from any gewog.

Gewog wise, Langthel has the biggest ratio of the sources drying up to those with no change (ratio of 7:2). Korphu has ratio of 1:1 and Tangsibji has 7:4. while Trong and Athang have a smaller ratio of water sources drying as compared to those with no change, as represented by ratio of 1:2 and 3:4 respectively.

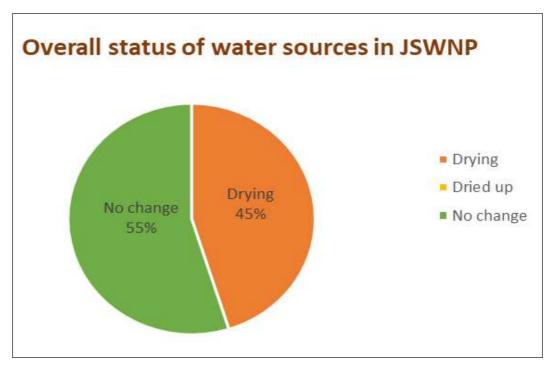


Figure 35: Status of water sources in JSWNP.

3.2. Lessons learnt

Overall, the past management plan implementation was a huge success for the park. Over 90% of the management prescriptions from the previous plan were implemented as per timeline and required standards. The following were some of the contributing factors (the lessons we learnt) for the successessful implementation;

3.2.1. Funding source

With secured funding from RGoB and projects the park achieved much of its budgetintensive conservation milestones such as wildlife surveys, research & monitoring, patrolling, infrastructure development such as staff quarters, visitor information center, livelihood enhancement programs for communities such as biogas, supply of improved breeds and climet-smart farming support, mobility bikes and field gears and equipment.

3.2.2. Partnership & Collaboration

Many of the conservation activities were implemented in partnership with other agencies which not only achieved better implementation but also enhanced the park's working relationship with the collaborating agencies. For example, the park's support in terms of providing improved breeds (Jersey) cattle to 22 households of Tama community was carried out in collaboration with the department of livestock (DoL) for they are more experienced in such activities than the park.

3.2.3. Adaptive management

Strategic Adaptive Management proves promising in an effective and rigorous management of reserves for biodiversity conservation (Kingsford and Biggs, 2012). During the past plan implementation period, the principles of adaptive management was applied to achieve desired targets' some of the best examples are;

• Effective planning and Implementation

The park developed annual work plan at the start of each financial year, aligning the activities with the approved fund. Review meetings were conducted on quarterly basis to incorporate changes that crop up on priority basis. Regular monitoring was carried out to ensure timely completion of the tasks. If a method did not work good for one year, the subsequent plan was modified to make it more realistic and achieveable.

• Human resource management

Human resource allocation was made strategically even if it meant deviation from the prescribed allocation in the actual work plan. We did not stick to the specified section heads to carry out all the tasks; instead, the works were distributed to field staffs based on their capacities, which led to timely completion of field works.

Resource allocation

Field offices were equipped with necessary equipment to undertake effective field works, monitoring and evaluation. Equipment such as GPS, SMART kits, mobility bikes and field gears were procured and issued to field staff.

However, the overall success story did not come without any challenge. The Park was faced with multiple issues and challenges during the plan implementation period, some of the prominent of which are;

• Lack of Technical Expertise

The park lacked technical expertise in certain fields and had to hire one such from other agencies for carrying out field works in some cases. For instance, the national park had to hire an expert from UWICER for small mammals' survey and site engineers for drawing, designing, estimation and work supervision of all construction work.

Outside collaborators

Some works was carried out in collaboration with the outside agencies. And in some of such cases there have been issues regarding coordination, monitoring and reporting. For instance, Biogas initiative in Adha-Rukha was implemented in collaboration with Wangdue dzongkhag administration and the activity implementation got delayed due to lack of coordination and monitoring.

• Delay in budget release

The system of quarterly budget release from the funding agency hampered the work implementation in many cases. This is because various works are scheduled in different months but when it comes to implementation, we had to wait until the time the budget was released, which was mostly delayed, leading to delayed completion of the activities.

3.3. Gaps and carry over actions from previous plan

The conservation activities prescribed in the past management plan were mostly implemented within the plan period; however, some important tasks had to be carried over to the next plan, some of which are as follows;

3.3.1. Lesser-known taxa

Although baseline data for most of higher taxa of fauna has been established, the survey and listing of lesser-known taxa such as micro-invertebrates, beetles, dragonflies & damselflies, moths, bees & wasps and mushrooms is pending.

3.3.2. Eco-tourism with sustainable business models

Although JSWNP was the first protected area in the country to start eco-tourism program with Nabji-Korphu eco-trail, not much success could be achieved due to lack of proper business model for such programs. Today, the existing infrastructure along the trail are deteriorating. Also, the park has many other potential tourism sites spread across the park, such as Adha-Rukha trail, ancient black mountain trail from Phobjikha, Tamala lake, and many more. Therefore, reviving or initiating these ecotourism opportunities with good business model would benefit the park residents and the country as a whole.

3.3.3. Climate change

Assessment of climate vulnerability and capacity assessment of park communities, spreading awareness on climate change and implementation of adaptation and readiness programs is a current need of the park in face of increasing climate disaster.

3.3.4. Infrastructure

Although basic infrastructure such as office buildings and staff quarters have been drastically developed during the past plan period, more of such is needed in various field offices. Nabji range is in need of both office building and staff quarter, Langthel range is in need of renovation of both office building and staff quarters, and Taksha range is in need of renovation of existing office building and staff quarter.

PART 4: THREAT ANALYSIS

Threat analysis encompasses identification of conservation threats and their assessment in conservation planning and management. It forms the integral part of conservation planning and management. Once the threat has been identified, threat ranking is necessary to prioritize interventions.

4.1. Conservation threats in JSWNP

4.1.1. Poaching

The Black Mountain landscape is an important habitat for many threatened wildlife species that are highly valued for their parts and products such as tiger, musk deer, Himalayan black bear and red panda among others. The landscape is surrounded by human settlements and is approachable from all four directions. From the northern side, an ancient trail leads towards the peak of the Black Mountain range; the trail is still used by nomadic yak herders for seasonal migration of yaks. The existence of such trails provides easy access to people of all kinds. Therefore, poaching is one of the major threats facing wildlife conservation in JSWNP. In the past years, the park's patrolling teams have located and dismantled large numbers of traps and snares set for wildlife poaching. In 2021 alone a total of 39 musk deer traps were located and removed by our patrolling teams from the Black Mountain region. In certain occasions, poachers are caught and apprehended on site inside the park's areas.

The main species targeted by poachers are musk deer, Himalayan black bear and tiger in rare cases. Other species such as barking deer, sambar deer and wild pigs are hunted for bush meat in some parts of the park. In some parts, such as along the ancient trail from Phobjikha, bird species such as monal pheasant, kalij pheasant and blood pheasant are poached as evident from the snares and traps seen during patrolling and survey transacts.

Illegal fishing is another form of poaching caught quite frequently inside the park or along its boundary. The Park is crisscrossed by multiple rivers and tributaries which harbors good population of freshwater fish species and is targeted by poachers for illegal fishing. Illegal fishing is frequently reported from areas of all range jurisdiction.

Illegal collection of hornet and honey is another form of poaching reported from some parts of the park, especially under Taksha range.

4.1.2. Illegal extraction of timber and NWFPs/ stone and boulder/ surface collection

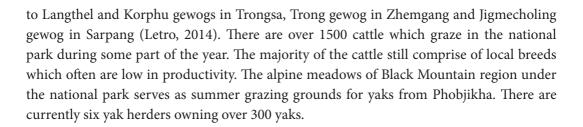
Most of the park residents depend heavily on timber for house construction, to which each household is eligible for timber to construct a new house every 25 years as per FNCRR. When a family divides within the 25 years period, the new house construction does not stand eligible unless the census registration is separated. Therefore, in such a case people tend to harvest timber illegally to construct new houses. Some people also harvest timber illegally for economic gain through sale of such timber. In the last four years (2016 to 2020), a total of 27 cases of illegal timber extraction were caught as per the official record (*Table 12*).

		200	2000			
Year	2016	2017	2018	2019	2020	Total
Illegal timber extraction	2	6	10	5	4	27

Table 12: Summary of illegal timber extraction cases in JSWNP

NWFPs are collected, consumed and marketed in all the communities in the park. Some of the commonly collected species are fern, mushrooms, bamboos, wild fruits and vegetables. However, there are other economically viable species that are restricted on collection that people tend to collect illegally for economic gains. This includes species such as *Paris polyphylla* (commonly known as Thog-sampa in sharchopkha, *Satua* in lhotshamkha and *Thochu kewa* in Dzongkha) and *Neopicorrhiza sp.* The *P. polyphylla* collection is rampant in areas opposite to Chendebji where both locals and outsiders enter the park area illegally and collect the species in destructive manner. *Picorrhiza sp.* is collected from black mountain areas of the park. Both of these species are used as important ingredients in traditional medicines. Other forms of illegal NWFP collection are harvesting of wood burr for woodcrafts and illegal surface collection of sand and boulders. For instance, two separate cases involving 20 trees, either illegally felled or damaged at Chendebji forest for burr extraction during 2018-2019.

4.1.3. Human wildlife conflict


Due to the presence of human population residing inside the national park who practice agriculture and livestock for their subsistence, human wildlife conflict is a common phenomenon in JSWNP. The findings from the social survey on people's perception of HWC trend in the national park show that HWC incidences are increasing over the years both in terms of crop damage and livestock depredation.

Crop raiding by wild animals occurs across all the gewogs under JSWNP while paddy and barley are the most damaged crop types. The wild animals involved in the crop damage include wild pig, monkey, sambar deer, porcupine, barking deer and Asiatic black bear of which wild pig is the most conflicting species while Himalayan black bear has the least conflicting record.

With many livestock herders from within and outside the national park freely grazing their livestock across different seasons of the year, the livestock often fall prey to the large carnivores like tigers, leopards and wild dogs. The free ranging livestock herding clubbed with minimal guarding practice increases risks of depredation by wild carnivores.

4.1.4. Grazing

The JSWNP is home to grazing grounds for both migratory and resident cattle and most of these grazing areas are under Langthel, Nabji and Tingtibi ranges. The migratory cattle herders are mostly from Chumey gewog in Bumthang and they migrate during the winter

A study conducted in the national park in 2014 on the impacts of grazing on forests and wildlife found that over grazing leads to trampling of soil, hampers natural regeneration, excessive browsing and lopping which leads to forest degradation (Letro, 2014). The livestock were also found competing with the wild ungulates for the palatable plant species which will impact the wild ungulate population thereby affecting the whole ecosystem. The free grazing also increases the incidences of livestock depredation by the wild predators thereby increasing human wildlife conflict.

4.1.5. Forest fire

Forest fire is a major challenge to conservation especially in Taksha range which is located in south-western part of the park. The vegetation type being dominated by Chirpine, the range faces cases of forest fires on yearly basis, mainly during dry winter months. Other ranges such as Langthel, Nabji and Tingtibi do have some conifer forests; however, forest fires are less frequent in these places.

4.1.6. Invasive species

A recent survey on the invasive species recorded five species of invasive plant species in JSWNP as follows; 1. *Ageratiana adenophora;* 2. *Chromolaena odorata;* 3. *Mikania micrantha;* 4. *Opuntia vulgaris;* and 5. *Parthenium hysterophorus.* Out of the five species, *A. Adenophora* is the most widely distributed species in the national park occurring in all the ranges. The *C. odorata* infested many parts of the national park mainly in the chirpine forests.

SI No.	Major IAPS	Distribution in JSWNP
1	Ageratina adeno- phora	Nimshong, Nabji, Korphu, Berti, Tongchur, Chungshing, Beyzam, Jangbi, Wangling, Phrumzur, Kudra, Oksengla, Simkharka, Reetey, Gong, GSI camp area, Radhithang, Dayu, Lawa, Lamga, Rukha, Migtena, Samthang, Harachu, Taksha.
2	Chromolaena odorata	Along Nimshong-Berti trail, Berti, Kezang-dra, Phrumzur, Jangbi, Wangdi- gang bridge area, Dayu, Rukha, Lawa, Lamga, Harachu, Samthang, Taksha.
3	Mikania micrantha	Nimshong-Berti trail, Berti, Wangdigang bridge area, Chakharthang, Zhil- ingbe, Tongchur, Dayu, Lawa, Lamga.
4	Opuntia vulgaris	Ugyen dra
5	Parthenium hys- terophorus	Sengling-brag, Rimtigang, Taksha, Rawdung, Wangdigang bridge area, Takabe, Zhilingbe.

Table 13: List of major Invasive plants in JSWNP

4.1.7. Wildlife Disease

Disease to wildlife is another threat to conservation. Given the nature of traditional yak and cattle herding practice in the areas of the parks such as black mountain region, Nabji-Reeti, Simkharka and Langthel, the risk of transmission of diseases like Foot and Mouth Disease (FMD) from domestic to wild ungulates is very high, particularly to musk deer, takin, goral, barking deer and samber deer which comes in close contact with livestock while grazing. Livestock officials has also warned us on the possibility of spread of the disease known as Black Quarter, which is caused by a bacterium *(Clostridium chauvoei)*, from yaks and horses to wild ungulates. Another agent of transmission of diseases like canine distemper and rabies to wildlife would be from the feral dogs. Livestock grazing along with domestic dogs also increases risk of disease transmission between livestock and wildlife.

4.1.8. Habitat degradation (Alpine grassland encroachment; landslides; erosion etc.)

Degradation of alpine habitat, especially encroachment of sub-alpine and alpine grasslands by Juniper and Rhododendron species along the Black Mountain region is a major concern for the park's conservation efforts. This has led to decrease in the grazing grounds for wild ungulates and domestic yaks alike. Since these areas fall in core tiger habitat, it is of great importance to conserve a healthy population of wild ungulates (prey) to support the magnificent cat species. Good habitat in the region would also reduce human-tiger conflict.

Other form of habitat degradation is visible in the form of landslides and soil erosion, especially in Langthel and Tingtibi ranges, mainly associated with construction of transmission lines. A natural landslide above Wangling village under Langthel range has washed away irrigation and drinking water supply to the village, which needs restoration interventions in the form of soil conservation works such as plantation and bioengineering structures.

4.1.9. Drying water sources

A survey to assess and map the water sources of the national park was carried out in 2021, covering entire inhabited areas of the park. The survey found that out of 82 water sources recorded, 45% of the were reported to be drying while remaining 55% had no change as compared to past. No dried-up water source was recorded. Gewog wise, Langthel has the highest ratio of the sources drying up to those with no change (ratio of 7:2). Korphu has ratio of 1:1 and Tangsibji has 7:4. while Trong and Athang have a smaller ratio of water sources drying as compared to those with no change, as represented by ratio of 1:2 and 3:4 respectively (Sinchuri, 2021). The following graph summarizes the status of water sources across different gewogs in the park;

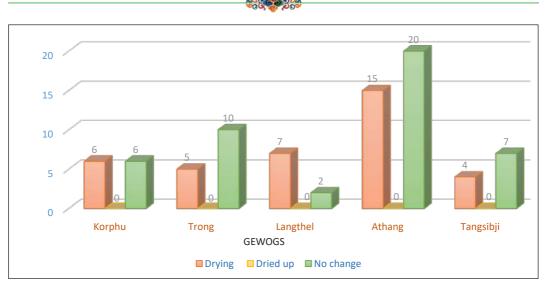


Figure 36: Gewog-wise status of water sources in JSWNP.

4.1.10. Developmental activities

Infrastructure development such as dam construction for hydropower, erection of high voltage transmission lines and road construction causes excessive removal of vegetation and soil excavation, resulting in erosion, river diversion, sedimentation as a result of dumping of rubbles and soil during the construction. JSWNP has in its periphery three major hydropower projects namely Punatsangchu, Mangdechu and Nikachu hydropower projects, and the pressure exerted by these on the park is enormous. Due to the influx of large number of people, both nationals and expatriates, the issues of wildlife offences, encroachment and waste increases, leading to conservation threats. Due to involvement of heavy machineries, noise and dust pollution becomes obvious. In certain parts such as Waichenchhu (opposite Mangdechu powerhouse), collection of riverbed materials for the hydropower project has caused diversion of waterways and degradation of aquatic biodiversity. Moreover, high voltage transmission lines of Mangdechu hydro runs through the park and causes habitat fragmentation and degradation on large scale in the areas of Langthel and Tingtibi ranges.

The network of roads inside the national park has increased drastically during the past decade. Especially, digging of gewog roads and farm roads to connect every village, big or small, in the park has intensified the road network in the park. With its benefit to the rural livelihood comes the threat to biodiversity conservation. Habitat fragmentation and degradation is the major threat posed by road construction.

4.1.11. Waste

The southeast boundary of JSWNP is demarcated by the national highway of Zhemgang-Gelephu whereby the road users carelessly throw plastics and pet bottles along the way. Likewise, the eastern boundary of the park geographically falls along ongoing construction of Nikachhu Hydro project. The waste generated by the project workers are not managed properly. The village settlements are located scattered inside the park. The plastics and pet

bottles generated from food wraps and drinks consumed by road users are thrown carelessly along the footpath. The Park has many places which are considered important from cultural and religious aspects, and attract many visitors. Such visitors also leave behind their wastes.

Many people from Bumthang Dzongkhag also use tsamdro for cattle grazing inside the park, who bring their cattle annually during the winter season and graze inside the forests of JSWNP for about six months, leaving their wastes inside the national park.

4.1.12. Climate Change

The Himalayas stretch over 1600 miles along the northern borders of the Indian subcontinent and the mountainous topography, heterogenic climetic conditions, geology and altitudinal variations in the Himalayas have resulted in distinctive landscapes, ecosystems and biodiversiy. However, the Himalayan ecosystem is rapidly changing under the current global and regional warming, which predicts increase in mean temperature by 0.3-4.8°C by 2100 (IPCC, 2013). Bhutan, located in the eastern Himalaya is no exception to the reality of climate change. By 2050, Bhutan's mean temperature is expected to increase by 2.5°C, with some of the high-altitude region expecting increase by 3.4°C (Parker, et. al., 2017). Climate projections indicate that there could be shifts in vegetation, species extinction and change in ecosystem service delivery with cascading consequences along the ecosystems and human livelihoods and lives (Xu et al., 2009 as cited in Snow Leopard Action Plan for Bhutan, 2018-2023).

Jigme Singye Wangchuck National Park, which represents a typical mountainous landscape characteristics of the Himalayas is vulnerable to all impacts of climate change that the whole Himalayan region is facing. The climate change is expected to impact the park's ecosystem and ecosystem services especially those related to hydrology. Shift in vegetation and phenology is increasingly observed. Due to increased heat stress, different species will shift towards more favourable zones. As a result, habitats are projected to be lost, fragmented or shifted resulting in the changes in the ecological communities. Species that require special habitats, specific food plants or migrate seasonally will be under threat under this scenario (DoFPS, 2015). There are also increasing incidences of pest and disease outbreaks and colonization by invasive species that can have severe implications on the native species and the ecosystem as a whole. As shown by the socio-economic survey, agriculture, livestock rearing and dependency on forest resources were the main livelihood option of the park residents. All of these are directly affected by climate change. Erratic rainfall, hailstorms, crop and livestock diseases, water shortage during cultivation season and many other forms of climate change adversity are already affecting the farmers.

Therefore, it is imperative that the whole process of the management planning is based on Climate-smart approach. Assessment of climate vulnerability of the park communities and their capacity in coping up with effects of climate change is a must in order to achieve climate-smart management interventions. It is also important to understand the ways in which each species and its habitat would be impacted by climate change in near future

and propose management interventions accordingly. This will make this plan more realistic and climate-smart. The adaptive nature of this plan is also a way to keep the management interventions climate-smart as it leaves room for re-designing the intervention approaches based on the emerging needs in the face of climate change. Taking into account the threats of climate change during the management plan period, various interventions are prescribed for mitigation of such threats such as climate-smart habitat management for climate-sensitive species, monitoring of disease outbreak in plants and animals, long-term monitoring of alpine and sub-alpine grasslands, enhancement of research on wildlife ecology, studies and control of invasive species, enrichment plantations, forest fire management and improvement of waterholes and saltlicks to name a few.

4.2. Management challenges

4.2.1. Inaccessibility of the areas

The Black Mountain range forms the core part of JSWNP. The range is a chain of rugged topography, mostly inaccessible to human efforts. Motorable roads are available only along the human settlements, along the periphery of the park; therefore, most of the patrollings are carried out on foot, which makes the task extremely challenging due to the inaccessibility of most of the areas.

4.2.2. Developmental pressure

Mangdechu, Nikachu and Punatsangchu form exterior boundary of the national park at different sides. All of these rivers are dammed for hydropower electricity. Therefore, there are four large scale hydro-electric projects (Mangdechu, Nikachu, Punatsangchu-I and Punatsangchu-II projects) under construction right in the periphery of the park. Similarly, construction of high voltage transmission lines through the park areas is rampant along Langthel and Tingtibi range areas. Developmental projects of such scales are sure to bring large number of negative impacts and adversity to conservation in the national park. The Park management has to work in close collaboration with these project authorities, often conflicting on ideas and values.

4.2.3. High dependency on natural resources

The park's communities are settled along mountainous slopes, mostly areas with low soil quality leading to low agricultural productivity. Due to this these communities largely depend upon natural resources such as NTFPs, cardamom cultivation in forest land, fuelwood and timber, which they collect from forest. This puts quite a challenge on the park management to balance between conservation and peoples' livelihood.

4.2.4. Poor conservation awareness

Since the protected areas in Bhutan have people living inside such areas, the local communities are integral part of biodiversity conservation. JSWNP has seven gewogs having human settlements in the park jurisdiction, and in many of these communities, awareness

regarding biodiversity conservation is still limited to few species. Therefore, spreading of awareness related to conservation and rules and regulations related to conservation is necessary.

4.3. Threat Ranking

The conservation threats were ranked using Miradi software, which considers three criteria for threat ranking, 1. Scope, 2. Severity, and 3. Irreversibility. Scope refers to the proportion of the target (area for ecosystems, population for species) that is likely to be affected within 10 years under current circumstances. Severity attempts to categorize the level of damage to the biodiversity target expected within that particular scope and in the specified time frame. Irreversibility is the degree to which the effects of a given threat can be undone and the targets affected by the threat restored, if the threat is stopped.

The nature of threats was determined as follows for all three criteria; 4 = Very High: The threat is likely to be pervasive in its scope, affecting the target across all or most (71-100%) of its occurrence/population; 3 = High: The threat is likely to be widespread in its scope, affecting the target across much (31– 70%) of its occurrence/population; 2 = Medium: The threat is likely to be restricted in its scope, affecting the target across some (11– 30%) of its occurrence/population; 1 = Low: The threat is likely to be very narrow in its scope, affecting the target across a small proportion (1-10%) of its occurrence/population.

In the threats ranking matrix, the three boxes against each threat stand for scope, severity and irreversibility from top to bottom. Color code wise, the dark green represents low, light green represents medium and yellow represents high.

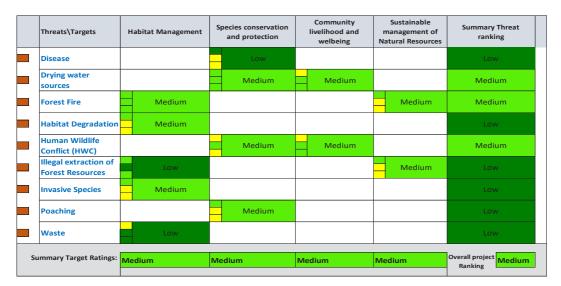


Figure 37: Threat Ranking of JSWNP using Miradi software

PART 5: MANAGEMENT PRESCRIPTION

This section outlines the overall strategic plan prescriptions based on the overall goal of the plan to address threats, issues and challenges described in the previous section. This will be achieved through 85 strategic actions grouped under 20 strategies which are further grouped under 6 conservation objectives. The strategies and actions (management prescriptions) are defined based on the overall conservation goal of the plan to conserve and maintain wildlife habitats, conserve wildlife species and enhance wellbeing and livelihood of the park residents.

The conceptual framework developed using the Miradi software summarizes the management plan's overall goals, objectives, threats, strategies and actions as depicted in the figure below;

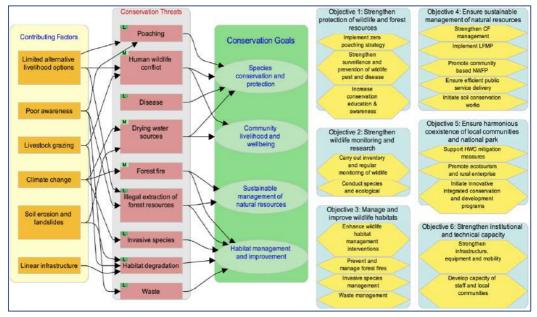


Figure 38: Conceptual Framework of the Management Plan.

Objective 1: To strengthen protection of wildlife and forest resources

1.1. Implement zero poaching strategy

- 1.1.1. Strengthen and conduct patrolling using Spatial Monitoring and Reporting Tool (SMART).
- 1.1.2. Carry out hotspot mapping of poaching and other illegal activities in the park.
- 1.1.3. Form community support groups for resolving poaching of threatened species, and provide timely incentives to such groups to motivate them to support conservation.
- 1.1.4. Start river rangers programme to patrol river stretches using rafts.

eccolor

1.2. Strengthen surveillance and prevention of pest and diseases

- 1.2.1. Carry out regular and opportunistic inspection of pest and disease outbreak.
- 1.2.2. Collaborate with DoL to carry out regular and opportunistic inspection of disease outbreak in livestock.
- 1.2.3. Conduct education and awareness campaigns on wildlife pest and diseases.

1.3. Increase conservation education and awareness

- 1.3.1. Develop and functionalize visitor information center at the park headquarter.
- 1.3.2. Conduct regular conservation awareness programs in schools and communities in and around the park.
- 1.3.3. Develop and install conservation messages (sign-boards and posters) at strategic locations in and around the park.
- 1.3.4. Develop conservation awareness materials (audiovisuals/signages/publications).

Objective 2: To strengthen wildlife monitoring and research

2.1. Carry out survey and regular monitoring of wildlife

- 2.1.1. Conduct periodic tiger survey as part of the National Tiger Survey.
- 2.1.2. Carry out regular monitoring of tigers in the biodiversity monitoring grids in the national park.
- 2.1.3. Conduct periodic forest inventory as part of national forest inventory.
- 2.1.4. Conduct periodic snow leopard survey as part of National Snow Leopard Survey.
- 2.1.5. Conduct periodic biodiversity monitoring (monitoring of focal species, endangered and endemic species in the park).
- 2.1.6. Develop Citizen science programmes, provide training and employ them to gather biodiversity data.

2.2. Conduct species and ecological researches

- 2.2.1. Carry out climate vulnerability and capacity assessment of the park residents.
- 2.2.2. Conduct study on Red Panda (Population status, density, distribution and conservation threats).
- 2.2.3. Conduct study on Musk deer (Population status, density, distribution and conservation threats).
- 2.2.4. Conduct studies on other threatened species (Gaur, Golden langur, Hornbill, White-bellied heron).

- 2.2.5. Conduct detailed survey of Fish diversity and distribution in the park.
- 2.2.6. Conductt baseline studies on insects (Bees and wasps; Dragonflies and damselflies; Beetles; Ants) and freshwater macroinvertebrates.
- 2.2.7. Establish data for Primula, Rhododendrons, Ferns, Mushrooms, Bamboos and Alpine plants).
- 2.2.8. Conduct long-term monitoring of alpine grasslands, taking climate change as a major parameter.
- 2.2.9. Conduct studies on important plant species such as Paphiopedilum spp, Cycas pectinata, Cupressus corneyana, Paris polyphylla, Neopicorrhiza sp., etc., taking climate change as a mojor parameter.

Objective 3: To manage and improve wildlife habitats

3.1. Enhance wildlife habitat management interventions

- 3.1.1. Improve the alpine grasslands in Black Mountain region for wild ungulates and livestock, as an adaptation to climate change adversity.
- 3.1.2. Improve waterholes and mineral licks as per the Habitat management guidelines of Bhutan.
- 3.1.3. Conduct enrichment plantations (food and shelter) in the degraded wildlife habitats, as an adaptation to climate change adversity.
- 3.1.4. Monitor and protect critical wildlife habitats (breeding/nesting/roosting/feeding sites), movement corridors and migratory routes.

3.2. Prevent and manage forest fires

- 3.2.1. Train staff and communities on forest fire fighting and management.
- 3.2.2. Equip with forest fire fighting tools and safety equipment.
- 3.2.3. Create forest fire awareness to the communities residing in fire risk zones.
- 3.2.4. Create community volunteer groups in forest-fire prone areas, provide training and engage them in forest fire fighting.
- 3.2.5. Manage fuel load (prescribed burning) to protect the critically threatened plant communities in the fire prone zones.

3.3. Invasive species management

3.3.1. Contain invasive plant species in critical habitat adopting relevant control measures with technical guidance from NBC, as an adaptation to climate change adversity.

- 3.3.2. Conduct studies on Invasive plant species in collaboration with NBC (IAPS diversity, distribution and habitat prediction modelling of majot IAPs of the park to understand their spreading potential in near future under the current climate change scenario).
- 3.3.3. Create awareness on impacts of invasive species and engage local communities in its management.

3.4. Waste Management

- 3.4.1. Organize mass cleaning campaign in collaboration with local communities and other stakeholders.
- 3.4.2. Initiate community-based waste management programs based on the principles of 4R (Refuse, Reduce, Reuse, Recycle) Monitor and regulate waste disposal within national park.
- 3.4.3. Initiate innovative waste management based on the principle of 4R (refuse, reduce, reuse and recycle).

Objective 4: To ensure sustainable management of natural resources

4.1. Strengthen Community Forests (CF) management

- 4.1.1. Review and revise CF management plans.
- 4.1.2. Provide training on CF record keeping and management.
- 4.1.3. Encourage growing NWFP inside CF.
- 4.1.4. Explore market for sale of NWFP and NWFP-products.
- 4.1.5. Explore and promote ecotourism and recreational activities inside CF.
- 4.1.6. Conduct regular monitoring of the CF management groups.

4.2. Implement Local Forest Management Plan (LFMP)

- 4.2.1. Train all field offices on LFMP implementation and record keepin
- 4.2.2. Allocate rural timber and firewood based on the LFMP prescription.
- 4.2.3. Carry out plantation in the degraded areas identified in the LFMP.

4.3. Promote community based NWFP management

- 4.3.1. Strengthen existing NWFP management groups (training on product development and marketing) and institute new groups in potential sites.
- 4.3.2. Construct collection centers for MYST (NWFP-management group of Jangbi) and renovate the collection center of RNTT (NWFP-management group of Rukha).

- 4.3.3. Conduct regular monitoring of the NWFP management groups.
- 4.3.4. Review and revise NWFP management plans.

4.4. Ensure efficient public service delivery

- 4.4.1. Ensure efficient and timely RNR service delivery.
- 4.4.2. Inspect, review and issue forestry clearance for developmental activities as per the TAT communicated by the department.
- 4.4.3. Adopt paper-less office policies and speed up application processing, taking advantage of internet and online services.

4.5. Initiate soil conservation works

- 4.5.1. Implement bioengineering measures in the landslide and eroded areas (eg. Wangling, Nabji and Korphu).
- 4.5.2. Implement river bank protection works (eg. Adha, Reeti, Taksha and Nabji).
- 4.5.3. Carry out landslide stabilization works below staff quarters at the park headquarter.

Objective 5: To ensure harmonious coexistence of local communities and national park

5.1. Support HWC mitigation measures

- 5.1.1. Upscale effective HWC mitigation measures (eg. electric fencing/ live fencing/ chain-link fencing, barbed wire fencing, stone wall, etc.).
- 5.1.2. Institute compensation and insurance schemes for livestock loss and crop damage by wild animals.
- 5.1.3. Explore agriculture intensification and livestock intensification programme to offset crop and livestock loss.
- 5.1.4. Validate the HWC hotspot areas in the park.
- 5.1.5. Provide training to deal with HWCs, conflict verification and resolution.

5.2. Promote ecotourism and rural enterprise

- 5.2.1. Revive Nabji-Korphu eco-trail and functionalize Adha-Rukha eco-trail.
- 5.2.2. Explore feasibility and establish new eco-trails (Phobjikha-Adha, Nimshong-Berti and Nabji-Reeti).
- 5.2.3. Develop capacity of eco-tourism management committee (training on hospitality and campsite management).
- 5.2.4. Promote home stays, local culture and heritage.

- 5.2.5. Revive Tamala lake and develop the site into a tourism destination, with effective business model.
- 5.2.6. Develop ecoutorism packages and promotional materials Promote cottage and small industries (handicrafts, furniture, food processing and packaging units such as local pickle and fish drying).

5.3. Initiate other innovative integrated conservation and development interventions

- 5.3.1. Promote energy efficient appliances to reduce pressure on forest.
- 5.3.2. Promote and support alternative energy sources (biogas and solar technology) for the park residents.
- 5.3.3. Support yak herding community of Black Mountain region to curb poaching and other illegal activities in the region.

Objective 6: To strengthen institutional and technical capacity

6.1. Strengthen infrastructure, equipment and mobility

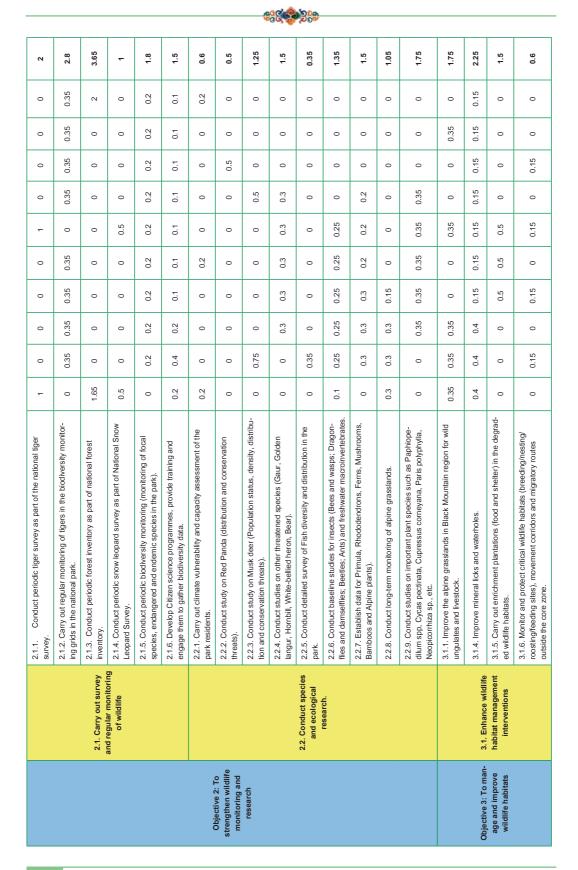
- 6.1.1. Construct staff quarters at Nabji and Langthel.
- 6.1.2. Renovate offices at the headquarter and all range offices.
- 6.1.3. Procure adequate equipment (computers, printers, furniture, patrolling equipment, safety gears, field gears).
- 6.1.4. Procure pool vehicle for the headquarter and motorbikes for all range offices.

6.2. Develop capacity of staff and local communities

- 6.2.1. Conduct refresher training (SMART patrolling, uniform, arms handling and drill, FIRMS, G2C Services, wildlife rescue and rehabilitation).
- 6.2.2. Train staff on species identification and taxonomy.
- 6.2.3. Train staff on wildlife research (study design, data analysis and reporting).
- 6.2.4. Train staff on GIS and remote sensing.

6.3. Ensure effectiveness of protected area management

- 6.3.1. Carry out regular Bhutan METT+ assessment of the park
- 6.3.2. Carry out timely evaluation of this plan implementation (mid-term evaluation by end of 5th year and final evaluation during the last year of the plan implementation).
- 6.3.3. Carry out works for the revision of this management plan (RBS, SES and LFMP) in the last year of the plan period.



PART 6: IMPLEMENTATION PLAN AND FINANCIAL OUTLAY

This management plan will be implemented for ten years, from January, 2022 to December, 2031. The implementation plan for the ten years was developed as per the Code of Best Management Practices - Forests and Nature Conservation of Bhutan 2020 (vol. 4) implementation framework, with year-wise implementation plan and cost estimate for each activity. The management plan is highly adaptive in nature and this implementation plan can be re-aligned based on the emerging challenges and opportunities during the plan period. An Annual Operational Work Plan will be prepared and linked with Annual Performance Appraisal (APA) and Monitoring Framework to help achieve this dynamism and evaluate/scored based on APA criteria annually. Since the Bhutan for Life (BFL) program is the main funding source for this plan implementation, the financial outlay has been primarily based on the BFLs financial model. Similarly, the 12th five-year plan (FYP) outlay of DoFPS has been referred to prepare this financial outlay.

Objectives	Strategies	Actions				Year along with budget (in Million Nu.)	g with bud	dget (in N	lillion Nu.				Activity Total
			71	Y2	Y3	Υ4	Υ5	Y6	77	Y8	۲9	Y10	
		1.1.1. Strengthen and conduct SMART patrolling.	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	15
	1.1. Implement zero	1.1.2. Carry out hotspot mapping of poaching and other illegal activities in the park.	0	0.3	0.3	0	0	0	0	0	0	0	0.6
	poaching strategy	1.1.3: Form community conservation groups (Risoops) for threatened species.	0.25	0	0.25	0	0.25	0	0.15	0	0.15	0	1.05
		1.1.4. Start river rangers programme to patrol river stretches using rafts.	0	0	0.5	1.5	0.25	0	0	0	0	0	2.25
		1.2.1. Carry out regular and opportunistic inspection of pest and disease outbreak.	0	0.5	0.25	0	0.25	0	0.25	0	0.25	0	1.5
Objective 1: To strengthen protec-	1.2. Strengthen surveil- lance and prevention of pest and diseases	1.2.2. Collaborate with DoL to carry out regular and opportunistic inspection of disease outbreak in livestock.	0.5	0.25	0	0.25	0	0.25	0	0.25	0	0.25	1.75
forest resources		 Conduct education and awareness campaigns on wildlife pest and diseases. 	0	0	0.3	0	0.2	0	0.2	0	0.2	0	0.9
		1.3.1. Develop and functionalize visitor information center at the park headquarter.	0.25	0.3	0.3	0	0	0.2	0	0	0.3	0	1.35
	1.3. Increase conser-	 1.3.2. Conduct regular conservation awareness programs in schools and communities in and around the park. 	0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0	1.6
	vation education and awareness	 3.3. Develop and install conservation messages (sign-boards and posters) at strategic locations in and around the park. 	0	0.5	0.2	0.2	0.2	0.2	0	0	0.5	0	1.8
		 1.3.4. Develop conservation awareness materials (audiovisuals/ signages/ publications). 	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	1.5

		3.2.1. Train staff and communities on forest fire fighting and management.	0	0.2	0.2	0	0.2	0	0.2	0	0.2	
		3.2.2. Equip forest fire fighting tools and safety equipment.	0	0	0.5	0.5	0	0	0	0	0	
	3.2. Prevent and man- age forest fires	 3.2.3. Create forest fire awareness to the communities residing in fire risk zones. 	0.05	0.1	0	0.1	0	0.1	0	0.1	0	
		 3.2.4. Create community volunteer groups in forest-fire prone areas, provide training and engage them in forest fire fighting. 	0	0	0.2	-	0.2	0	0	0	0	
		3.2.5. Manage fuel load (prescribed burning) to protect the critically threatened plant communities in the fire prone zones.	0	0	0.5	0	0.5	0	0.5	0	0.5	
Objective 3: To man-		3.3.1. Contain invasive species in critical habitats.	0	0.5	0.5	0.25	0.25	0.25	0.25	0.25	0.25	
widdife habitats	3.3. Invasive species management	3.3.2. Conduct studies on Invasive plant species in collaboration with NBC (IAPS diversity, distribution and habitat prediction modelling of majot IAPs of the park to understand their spreading potential in near future under the current climate change scenario).	o	0.35	0.35	0.35	0	0	0	o	0	
		3.3.3. Create awareness on impacts of invasive species to the local communities	0	0	0	0	0.25	0.25	0	0	0	
		3.4.1. Organize mass cleaning campaign in collaboration with local communities and other stakeholders.	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
	3.4. Waste Manage- ment	3.4.2. Initiate community-based waste management programs based on the principles of 4R (Refuse, Reduce, Reuse, Recycle).	0	0.25	0.25	0.25	0.25	0.25	0	0	0	
		3.4.3. Monitor and regulate waste disposal within national park.	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	
		4.1.1. Review and revise CF management plans.	0	0.2	0	0.4	0.4	0.4	0.2	0.2	0.6	
		4.1.2. Provide training on CF record keeping and management and product development.	0	0.35	0	0	0.35	0	0	0.35	0	
	4.1. Strengthen Com-	4.1.3. Encourage growing NWFP inside CF.	0	0	0.2	0.2	0	0	0	0	0	
Objective 4: To	management	4.1.4. Explore market for sale of NWFP and NWFP-products.	0	0.15	0.15	0.15	0	0	0	0	0	
ensure sustainable management of		$4.1.5.\ \mbox{Explore}$ and promote ecotourism and recreational activities inside CF.	0	0	0.5	0	0.5	0	0.5	0	0.5	
natural resources		4.1.6. Conduct regular monitoring of the CF management groups.	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
		4.2.1. Train all field offices on LFMP implementation and record-keeping	0.2	0	0	0.2	0	0	0	0.2	0	
	4.2. Implement Local Forest Management Plan (LFMP)	4.2.2. Allocate rural timber and firewood based on the LFMP prescription.	0	0	0	0	0	0	0	0	0	
		4.2.3. Carry out plantation in the areas identified in the LFMP.	0	0.25	0	0.25	0	0.25	0	0.25	0	

1.25

0.5 2.8 1.05

0.45

2

0.4

1.25

0.6

Ť

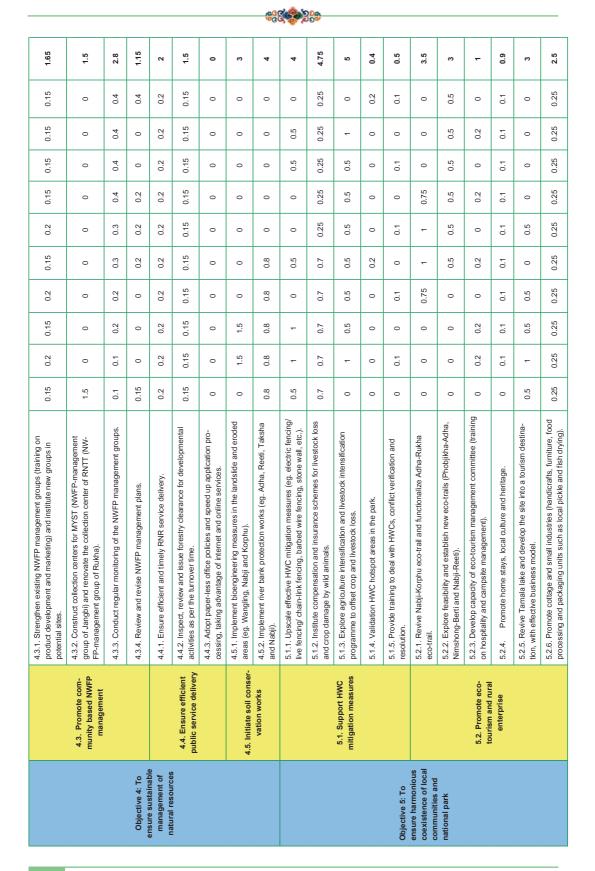
0

0.55

Ţ

~

1.4


2.75

7

1.05

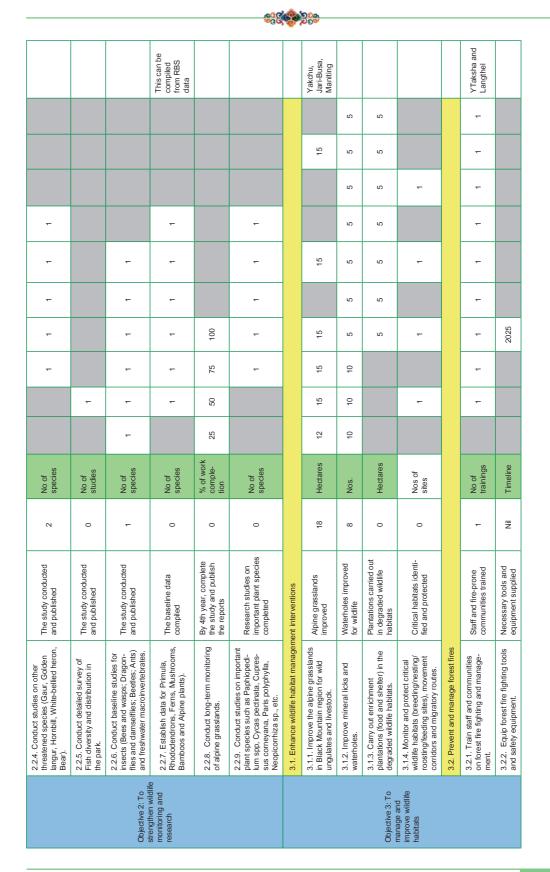
0.5

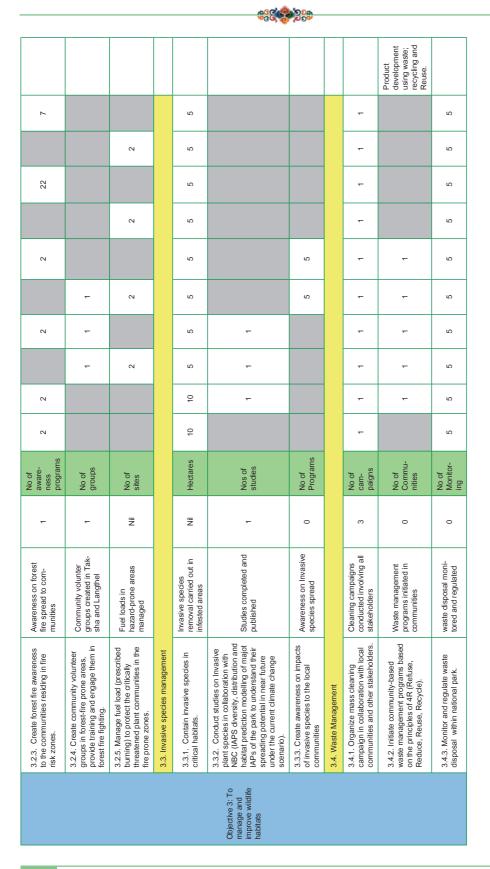

÷

Objective 5: To	5.3. Initiate other	5.3.1. Promote energy efficient appliances to reduce pressure on forest	0	0.5	0.5	0.5	0.2	0.2	0.2	0	0	0	2.1
ensure harmonious coexistence of local	innovative integrated conservation and	5.3.2. Promote and support alternative energy sources (biogas and solar technology) for the park residents.	0	0	0.5	0.5	0	0	0	0.5	0.5	0.5	2.5
national park	tions.	5.3.3. Support yak herding community of Black Mountain to encourage them to check illegal activities in the region by outsiders.	0	0.5	0.5	0.5	0.5	0.5	0.5	0	0	0	3
		6.1.1. Construct staff quarters at Nabji and Langthel.	0	0	4.55	0	0	4.55	0	0	0	0	9.1
	6.1. Strengthen infra-	6.1.2. Renovate offices at the headquarter and all range offices.	0	1.2	0.7	0.7	0.7	0.7	0.5	0.5	0.5	0.5	9
	structure, equipment and mobility	6.1.3. Procure adequate equipment (computers, printers, furniture, patrolling equipment, safety gears, field gears).	0.5	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	5.5
		6.1.4. Procure pool vehicle for the headquarter and motorbikes for all range offices.	2.38	0	0.28	0	0.49	0.49	0.49	0.49	0.49	0.49	5.6
Obioative 6. To		6.2.1. Conduct refresher training (SMART patrolling, uniform, arms han- ding and drill, FIRMS, G2C Services, wildlife rescue and rehabilitation).	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	5
Ubjective 5: 10 strengthen institu-	6.2. Develop capacity	6.2.2. Train staff on species identification and taxonomy.	0.35	0.35	0.35	0	0	0	0	0	0	0	1.05
uonar and recrimical capacity	or starr and local com- munities	 5.3.3. Train staff on wildlife research (study design, data analysis and reporting). 	0	0	0	0	0	0.35	0.35	0.35	0.35	0.35	1.75
		6.2.4. Train staff on GIS and remote sensing.		0	0	0.35	0.35	0	0	0	0	0	0.7
		6.3.1. Carry out Bhutan METT+ assessment of the park.	0.25	0	0	0	0	0.25	0	0	0	0.25	0.75
	6.3. Ensure effective- ness of protected area management	6.3.2. Carry out timely evaluation of this plan implementation (mid-term evaluation by end of 5th year and final evaluation during the last year of the plan implementation).	0	0	0	0	0.35	0	0	0	0	0.35	0.7
		6.3.3. Carry out works for the revision of this management plan (RBS, SES and LFMP) in the last year of the plan period.	0	0	0	0	0	0	0	0	0	5	2
TOTAL			16.83	21.45	25.18	18.5	18.09	20.59	13.19	11.09	13.24	14.29	172.45

<u> 88869</u>

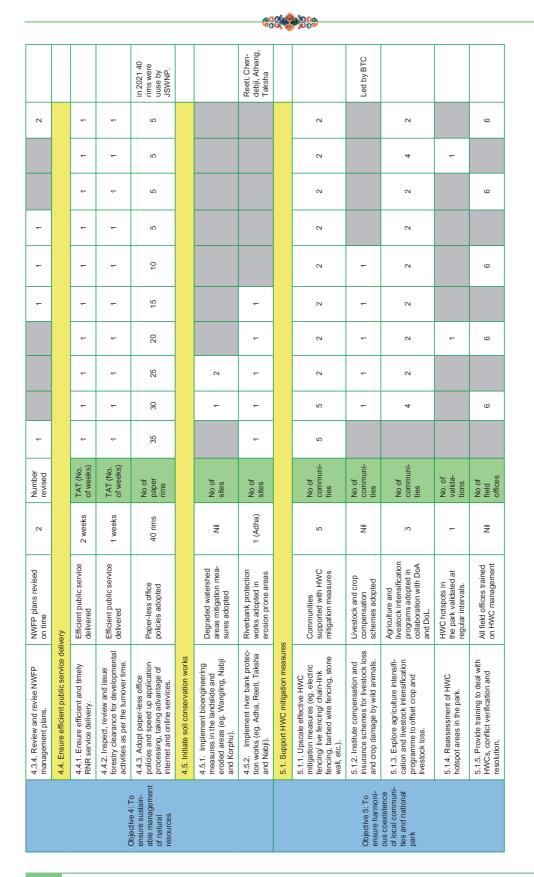
Figure 39: Implementation plan and Financial outlay of the Management Plan


PART 7: MONITORING AND EVALUATION


is the main step towards effective fulfillment of the conservation goals and objectives. A realistic monitoring and evaluation plan for this Monitoring of each conservation activities during the time of activity implementation and evaluation after the completion of each activity management plan is prepared as per the Code of Best Management Practices - Forests and Nature Conservation of Bhutan 2020 (Vol. 4) (DoFPS, 2020), highlighting the baseline from which each activity will be picked up from, the output indicators, and year-wise target for each activity. The Park, as the lead implementor of the activities will be responsible for yearly monitoring and evaluation for the implementation of these activities.

	t Y9 Y10 Remarks		00 10000 10000 SMART patrolling		Zizi, Ramachen, Langthel, Nabi, Tngti- bi, Taksha	Tingtibi		-	~	4
	Y7 Y8	-	10000		4			-	~	ę
Yearly Target	Y5 Y6		10000 10000	Revali- dation	m			-	~	2
	Y3 Y4		9000 10000		N	1 2		-	-	-
	Y1 Y2	-	7000 8000	0 100	-			N	N	
	Unit	-	KM	% of work comple- tion	Nos. (cumula- tive)	No (Ranges)		Nos of inspec- tions	Nos of inspec- tions	Nos.
	Baseline	_	6800	ĪŽ	-	0	ses	ĪŽ	Ē	Ĩ
	Output Indicators		Patrolling effort increased	Wildlife offence hotspots identified and mapped.	Community patrolling groups formed	No. of ranges imple- menting the program	intion of pest and diseas	Forest pest and dis- eases prevented	Livestock pest and diseases kept under control	Awareness on wildlife pest and diseases
	Action	1.1. Implement zero poaching strategy	1.1.1. Strengthen and conduct SMART patrolling.	 1.1.2. Carry out hotspot mapping of poaching and other illegal activities in the park. 	1.1.3. Form community conservation groups (Risoops) for threatened species.	1.1.4. Start river rangers programme to patrol river stretches using rafts.	1.2. Strengthen surveillance and prevention of pest and diseases	 Carry out regular and opportunistic inspection of pest and disease outbreak. 	 2.2. Collaborate with DoL to carry out regular and opportunistic inspection of disease outbreak in livestock. 	 Conduct education and awareness campaigns on wildlife
	Objectives				Objective 1: To ctranothen	protection of wildlife and forest	resources			

	1.3. Increase conservation education and awareness	nd awareness													
	 1.3.1. Develop and functionalize visitor information center at the park headquarter. 	VICfunctional and cater to visitors	Ni	Year			Func- tional- ize								Functional- izein Yr. 3 and upgrade if necessary.
Objective 1: To strengthen protection of	1.3.2. Conduct regular conservation awareness programs in schools and communities in and around the park.	Students and commu- nities aware of conser- vation importance	2	Nos. of programs		5	2	5	2	5	5	5	7		
windline and rolest	 Develop and install conser- vation messages (sign-boards and posters) at strategic locations in and around the park. 	Sign boards and posters installed in all strategic locations	N	Nos of locations		5	7	7	5	2			7 (ren- ovate)		
	 1.3.4. Develop conservation awareness materials (audiovisuals/ signages/ publications). 	Conservation materials developed and pub- licized	٢	Nos.	5	7	2	7	2	5	7	7	5	2	
	2.1. Carry out survey and regular monitoring of wildlife	toring of wildlife													
	2.1.1. Conduct periodic tiger survey as part of the national tiger survey.	NTS completed suc- cessfully in the park	65	Nos. of grids	57					65				65	08 grids com- pleted within 2021.
	2.1.2. Carry out regular monitoring of tigers in the biodiversity monitoring grids in the national park.	Regular tiger monitor- ing carried out	45	Nos. of grids		20	20	20	20		20	20	20		5 grids in each range
	2.1.3. Conduct periodic forest inventory as part of national forest inventory.	NFI completed suc- cessfully in the park	108	Nos. of grids	54									108	54 completed within 2021.
	2.1.4. Conduct periodic snow leop- ard survey as part of National Snow Leopard Survey.	Periodic NSLS con- ducted in the park	Nil	No of survey	+					۲					
Objective 2: To strengthen wildlife monitoring and research	 2.1.5. Conduct periodic biodiversity monitoring (monitoring of focal species, endangered and endemic species in the park). 	Biodiversity monitoring conducted in Biodicer- sity Monitoring Grids (BMG)	45	No of BMG		9	9	9	Q	9	9	9	9		1 grid in each range
	2.1.6. Develop Citizen science programmes, provide training and engage them to gather biodiversity data.	Community scientist groups formed in differ- ent parts of the park	1 (Reeti)	No of groups formed	-	5									1 in each range
	2.2. Conduct species and ecological researches	searches													
	2.2.1. Carry out climate vulnerability and capacity assessment of the park residents.	CVCA carried out every 5 years	0	Nos.	-				-					+	
	2.2.2. Conduct study on Red Panda (distribution and conservation threats).	The study conducted and published	-	No of studies			-					-			
	2.2.3. Conduct study on Musk deer (Population status, density, distribu- tion and conservation threats).	The study conducted and published	٣	No of studies		-					4				



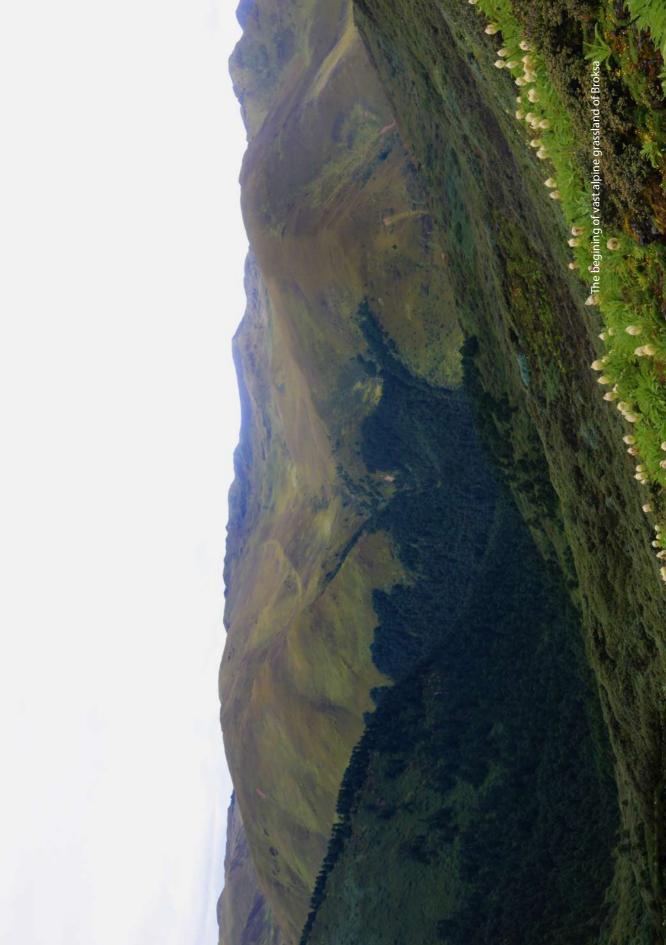
	As per SFES record.	As per SFES record and need assess- ment.				Yearly moni- toring								
	2					17			7	5		Train ex- isting groups		5
	3				-	17			7			Train ex- isting groups		a
	1	5				17		6 (re- fresher)	7	5		Train existing groups		2
	1				-	17			7			Train ex- isting groups		Q
	2	Ω				17			7	5		5 (create 1 new)		4
	2		ę		-	17			7			Train ex- isting groups		4
	2	5	з	-		17		6 (re- fresh- er)	7	5		4 (cre- ate 1 new)		ю
				-	-	17			2			Train ex- isting groups		ю
	1	5		+		17			7	5		3 (cre- ate 1 new)		5
						17		9	7			Train existing groups	1 new; 1 reno- vation	р
	Nos.	Nos. of CF groups trained	Nos of CFMGs covered	No of market linked	No of CF covered	No of CFs covered		No of field offices	No of gewogs covered	Hectares		No of NWFP grpups (cumula- tive)	No s	No of groups moni- tored.
	17	-	Nil	1 (Samthang)	Nii	17		Nii	Nil	Nil		5	-	5
F) management	CFMPs reviewed and revised on time	CF record keeping trainings provided to the CF member	Growing of NWFP in CFs initiated	Maarket for timber and NWFP export linked	Eco-tourism activities initiated in CFs	All CFMGs monitored once every year	ent Plan (LFMP)	Field staff trained on LFMP implementation	Rural allocations made strictly based on LFMP	Plantations carried out in identified areas	management	NWFP management groups strengthened	NWFP collection centers established	NWFP management groups monitored annually
4.1. Strengthen Community Forests (CF) management	4.1.1. Review and revise CF man- agement plans.	4.1.2. Provide training on CF record keeping and management and product development.	4.1.3. Encourage growing NWFP inside CF.	4.1.4. Explore market for sale of NWFP and NWFP-products.	4.1.5. Explore and promote eco- tourism and recreational activities inside CF.	4.1.6. Conduct regular monitoring of the CF management groups.	4.2. Implement Local Forest Management	4.2.1. Train all field offices on LFMP implementation and record-keeping	 Allocate rural timber and firewood based on the LFMP prescription. 	4.2.3. Carry out plantation in the areas identified in the LFMP.	4.3. Promote community based NWFP management	4.3.1. Strengthen existing NWFP management groups (training on product development and marketing) and institute new groups in potential sites.	4.3.2. Construct collection centers for MYST (NWFP-management group of Jargb) and renovate the collection center of RNTT (NW- FP-management group of Rukha).	 Conduct regular monitoring of the NWFP management groups.
							Objective 4: To	ensure sustain- able management of natural resources						

		1 1 Through assessment of previous failure to be failure to be failure to be foundated; 1 1 1 New activity to focus on developing stee instead of creating infrastructure.	-	2 2 2	100	5			5	~
	4	-	-	7	95	7		-		-
	ъ		-	N	85	N		7	-	٦
			-	7	75	7		2	-	-
			-	7	50	N		N		-
					25					
	No. of facilities devel- oped	No of eco-trails identified	No of trainings	No of home- stays	% of devel- opment works	No of goods promoted	suc	No of communi- ties	No of communi- ties	No (loca- tions)
	Nii	1 (nabji-kor- phu)	1 (cook's training, Jangbi)	Nij	Nil.	2 (La- wa-Lamga and Jangbi handicraft)	ment interventic	e	8 (Rukha)	1 (Jari-Bu- sa)
arprise	The trail revived and functionalized	The ancient trails opened for eco-tourism	The eco-tourism man- agement committees trained	home-stays and local culture promoted	Tamala lake developed into tourism destination	CSI promoted through eco-tourism activities and marketing	conservation and developr	Energy efficient appli- ances adopted	Biogas and solar technologies adopted by remote and needy communities	Support of roofing ma- terials and access to drinking water given in
5.2. Promote ecotourism and rural enterpri	5.2.1. Revive Nabij-Korphu eco-trail and functionalize Adha-Rukha eco-trail.	5.2.2. Explore feasibility and estab- lish new ecotralis (Phobjikha-Adha, Nimshong-Berti and Nabji-Reeti).	5.2.3. Develop capacity of eco-tourism management committee (training on hospitality and campsite management).	5.2.4. Promote home stays, local culture and heritage.	5.2.5. Revive Tamala lake and develop the site into a tourism destination, with effective business model.	5.2.6. Promote cottage and small industries (handicrafts, furniture, food processing and packaging units such as local pickle and fish drying).	5.3. Initiate other innovative integrated conservation and development interventions	5.3.1. Promote energy efficient appli- ances to reduce pressure on forest	5.3.2. Promote and support alternative energy sources (biogas and solar technology) for the park residents.	5.3.3. Support yak herding commu- nity of Black Mountain to encourage them to check illegal activities in the
				Objective 5: 10 ensure harmoni- ous coexistence of local communi-	ties and national park					

ACC CONDA

<u>66666</u>

Figure 40: Monitoring plan template with yearly target for the Management Plan


REFERENCES

- 1. BMWHI. 2018. Report on Adaptive Management Training on Protected Areas in the Asia-pacific. Blue Mountains World Heritage Institute, New South Wales, Australia.
- 2. DoFPS, 2015. Protected Areas of Bhutan. Department of Forests and Park Services, Ministry of Agriculture and Forests, Thimphu, Bhutan.
- 3. DoFPS, 2020. Forest and Nature Conservation Code of Best Management Practices of Bhutan, Volume IV. Protected Area management. Department of Forests and Park Services, Ministry of Agriculture and Forests.
- 4. DoFPS, 2017. Forests and Nature Conservation Rules and Regulations of Bhutan (2017), Fourth Edition. Department of Forests and Park Services, Ministry of Agriculture and Forests.
- 5. Dorji, S., 2013. Musk deer habitat status and conservation threats in Jigme Singye Wangchuck National Park. Jigme Singye Wangchuck National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests.
- 6. Dorji, S., 2016. Fresh Water Fish Diversity Survey in Jigme Singye Wangchuck National Park. Jigme Singye Wangchuck National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests.
- 7. Dorji, S., 2017. Mapping Tiger Conflict Hotspots in Jigme Singye Wangchuck National Park. Jigme Singye Wangchuck National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests.
- 8. Dorji, S., 2017. Small Mammals in Jigme Singye Wangchuck National Park. Jigme Singye Wangchuck National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests.
- 9. Dorji, S., 2018. Population, Diet and Nesting ecology of two sympatric Hornbills (Rufous-necked hornbill, *Aceros nipalensis* and Great hornbill, *Buceros bicornis*) in Jigme Singye Wangchuck National Park. Jigme Singye Wangchuck National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests.
- FRMD, 2017; Land Use and Land Cover Assessment of Bhutan 2016, Technical Report. Forest Resources Management Division, Department of Forests and Park Services, Ministry of Agriculture and Forests.
- 11. IPCC, 2013. Climate Change 2013- The Physical Science basis: Summary for policy makers. UK: Cambridge University Press.
- 12. JSWNP, 2003. Conservation Management Plan (July 2003 to June 2007). Jigme Singye Wangchuck National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests.
- JSWNP, 2014. Conservation Management Plan (January 2014 to December 2018). Jigme Singye Wangchuck National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests.

- 14. Kingsford, R.T. and Biggs, H.C. (2012). Strategic adaptive management guidelines for effective conservation of freshwater ecosystems in and around protected areas of the world. IUCN WCPA Freshwater Taskforce, Australian Wetlands and Rivers Centre, Sydney.
- 15. Letro, L. (2014). Study on Grazing and Cattle Migration in Jigme Singye Wangchuck National Park. Jimge Singye Wangchuck National Park, Trongsa.
- 16. Letro, L. (2018). Assessing the Structural Connectivity of a Biological Corridor for Tiger Movements between National Parks in Bhutan. Greifswald University, Germany.
- 17. Letro, L., Duba, D, Tandin T, Wangdi S (2021). Rare capture of a snow leopard in Jigme Singye Wangchuck National Park, Bhutan. *CATnews* Spring.
- 18. Letro, L., Duba, D., Tshering, T., Dukpa, P. (2019). Thriving Tigers of Jigme Singye Wangchuck National Park, other sympatric wild felids and ungulates. Jigme Singye Wangchuck National Park, Tshangkha, Trongsa, Bhutan.
- 19. Letro, L., Wangchuk, S. (2016). Monpa, the early settlers of Bhutan in Jigme Singye Wangchuck National Park and conservation strategy. *European Online Journal of Natural and Social Sciences* 5, 988–995. Available at: http://www.european-science.com
- 20. NCD, 2020. Protected Area Zonation Guidelines of Bhutan. Nature Conservation Division, Department of Forests and Park Services, Ministry of Agriculture and Forests, Thimphu, Bhutan.
- 21. Parker, L., Guerten, N., Nguyen, T., Rinzin, C., Tashi, D., Wangchuk, D., Penjor, S. (2017). Climate Change Impacts in Bhutan: Challenges and Opportunities in Agriculture Sector (Working paper No. 191). CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).
- 22. RSPN 2021. Report on White-bellied Heron annual population survey, 2021. Royal Society for Protection of Nature, Thimphu, Bhutan.
- 23. Sinchuri, A. M., 2021. Water Sources Mapping and Watershed Assessment Report of Jigme Singye Wangchuck National Park. Jigme Singye Wangchuck National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests.
- 24. Sinchuri, A. M., and Phuentsho, 2019. An Inventory and Assessment of Invasive Alien Plant Species (IAPS) in Jigme Singye Wangchuck National Park. Jigme Singye Wangchuck National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests.
- 25. Tshewang, S., and Letro, 2019. Inventory of Herpeto-faunal Diversity in Jigme Singye Wangchuck National Park. Jigme Singye Wangchuck National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests.
- 26. Wangdi, T., Tobgay, S., Dorjee, K., Dorji, K., Yangdon, N., and Wangyel, S. 2019. Report on Building Socio-ecological Resilience: An Adaptation to Progressive Climate Change in Sakteng Wildlife Sanctuary. Department of Forests and Park Services, Ministry of Agriculture and Forests, Bhutan.
- 27. WildTeam. 2017. Project Management for Wildlife Conservation v2.0. WildTeam, Cornwall, UK.

APPENDIX

Appendix 1: Local Forest Management Planning

Background

The Forest and Nature Conservation Act of Bhutan, 1995 and Forest and Nature Conservation Rules and Regulation, 2017 states that Bhutan's State Reserve Forest must be managed with proper management plan. However, sustainable management of forests using scientific principles has been confined to FMUs and CFs, despite the unmanaged forests outside these regimes are under tremendous pressure as major portion of the annual timber supply are met from these areas. Accordingly, Department of Forest and Park Services has come up with guidelines for establishment of Local Forest Management Plan (LFMP) and has directed all field Divisions and Parks to come up with LFMPs for sustainable management of such unmanaged forests. Therefore, in line with Conservation Acts and Rules, and instructions from the Department, JSWNP initiated the process of Local Forest management planning in 2017. Although LFMP forms a separate plan document for areas in territorial divisions, for protected areas, the LFMPs are clubbed together with the overall Management Plan of the protected area; compiled as a separate chapter. The LFMPs are prepared following a standard guideline issued by FRMD, taking each gewog as the unit of LFMP. For JSWNP, out of the ten gewogs falling in the park, only seven have human settlements falling inside the park; therefore, this chapter is comprised of compilation of LFMPs of these seven gewogs.

For each of the LFMPs, the respective area was mapped, whereby the park's core zone falling inside the gewog was clipped away, areas with existing management plan such as CFs were clipped off and only those remaining areas were put under the Local Forest Management Area (LFMA). Further, from the LFMA, the far flung, remote and inaccessible areas were kept as future management areas and no survey was conducted in such areas. Only the areas from where resources were extracted in the past and have potential for extraction in next ten years were considered for the LFMP. The final LFMP area was surveyed as per the guideline; and based on the data, designated into three circles; Bulit-up areas, protection circle and production circle. Built-up area is formed by human settlements, agricultural lands and other private lands, protection circle is formed of the areas with slopes greater than 45-degree (100%), water bodies buffer, road buffer, and important sites (cultural, religious and historical sites) buffer and the Production circle is the actual area from where resources will be extracted on sustainable basis in next ten years.

1. The forest management areas

1.1. The Area

JSWNP has seven gewogs with human settlements inside the park's jurisdiction and all of these are covered with LFMP; the three gewogs; Phobji, Phuntenchu and Dovan do not have human settlements in the park area and no LFMP is required.

SI No.	Gewogs	Dzongkhag	Total Gewog area (Ha)	Gewog area inside the park (Ha.)	% of ge- wog area falling in the Park	Settle- ment in the Park area	LFMP pre- pared/ not
1	Trong	Zhemgang	35913.0	10797.2	30.1		
2	Jigmechholing	Sarpang	50130.4	26060.0	52.0		
3	Dovan (Dragc- hhu)	Sarpang	22227.0	634.6	2.9	х	X
4	Korphu	Trongsa	29022.7	29022.7	100.0		
5	Langthel	Trongsa	50821.4	16875.1	33.2		
6	Tangsibji	Trongsa	37218.0	27049.1	72.7		
7	Phobji	Wangdue	15125.0	5825.1	38.5	Х	Х
8	Athang	Wangdue	77841.7	53420.3	68.6		
9	Sergithang	Tsirang	13644.8	1270.3	9.3		
10	Phuntenchu	Tsirang	13644.6	2061.5	15.1	Х	Х

Table 14: Gewogs and settlements details in JSWNP.

Trong gewog is located in the south-eastern part of the park and consists of three communities; Tama, Takabi and Berti inside the park jurisdiction. There are 858 people living in these three communities, who are largely dependent on forest resources such as timber, firewood and NTFPs and such resources are supplied from the nearby forests. Though Tama and Berti have community forests, resources are extracted from the forests outside of these CFs as well. The Local Forest Management Area (LFMA) of Trong gewog is formed of four compartments; Berti compartment, Tama-1 compartment, Tama-2 compartment, and Tama-3 compartment, forming total area of 1879.59 Hectares. The LFMA is designated into Built-up, Protection and Production circles with areas of 247.41 hectares, 538.5 hectares and 1105.37 hectares respectively.

Jigmechholing gewog spreads from south eastern corner, forming the southern border of the park until the central region, with a small intrusion of Chhudzom (Doban) gewog at the south-central border. Though a large portion (52%) of this gewog falls in the park, only one community, Reeti, falls inside JSWNP. There are 319 people living in Reeti community and due to its remote location, people are heavily dependent upon forest resources. The village has no community forest and the resources are extracted from unmanaged forests around the village. The LFMA of Jigmechholing gewog is formed to two compartments; Compartment 1 towards the east and compartment 2 towards the west, separated by the Reeti river. The total LFMP area is 1127.88 hectares, exclusive of the future management areas. The area is designated into 66.2 hectares of Built-up areas, 110.32 hectares of protection circle and 961.54 hectares of production circle.

Korphu is the only gewog that falls completely inside JSWNP. It is located towards the eastern side of the park and extending towards the Black Mountain peak in the central region. There are three main communities; Nabji, Korphu and Nimshong in the gewog and total population of 1667. All three communities depend on forest resources for livelihood and despite all of them having a community forest each, resources are still extracted from other nearby forests. The LFMA of Korphu gewog is formed of three compartments; Nabji, Korphu and Nimshong compartments, and total LFMP area of 3890.49 hectares.

Langthel gewog, extending from mid-eastern boundary of JSWNP towards its central region, has 33.2% of its area falling inside the park. There are multiple communities such as Phrumzur, Jangbi, Wangling, Ngormay, Shengling, Baseling and Nangnang scattered in the areas of this gewog in the park jurisdiction. The people are mainly tribal Monpa communities who depend heavily on forest resources for livelihood. There are 725 people living in these communities. The LFMA of Langthel gewog has four compartments which forms a total area of 2483.89 hectares. This area is designated into 244.65 hectares of built-up area, 804.21 hectares of protection circle and 1907.82 hectares of production circle.

Tangsibji gewog has 72.7% of its total area falling inside JSWNP, located in the northern side of the park. Two villages of Kella and Dimba are located in the park, though the latter has no people living in the village currently. Chendebji village is located right outside the park's boundary and their agricultural fields are located in the park area. In total, there are854 people living in the park area of Tangsibji gewog and they depend on forest resources for livelihood. The LFMA of Tangsibji gewog is formed of two compartments; Kella compartment and Dima compartment. No area was mapped for Chendebji village as all of their resource demand is met from areas outside the park. The total LFMA is 1168.22 hectares which are designated into 671.33 hectares of built-up areas, 342.16 hectares of protection circle and 771.03 hectares of production circle.

Athang gewog forms the western boundary of the park and extends inward until the central Black Mountain range. Over 68.6% of the gewog's area is located inside the park jurisdiction and the communities of Lopokha, Lhomtshokha, Phaktakha, Gemdro, Bartsa, Kago, Morakha and Gentsawa towards Adha side and communities of Rukha, Migtena, Lawa, Lamga, Dayu, Kashacjeko, Samthang, harachu and Satshamla towards Rukha side are all located inside the park area. A total of 1093 people live in these villages and are depend on forest resources for livelihood. The LFMA of Athang gewog is formed by five compartments; Lhomtshokha, Lopokha, Lawa-Dayu, Rukha-Lamga and Samthang compartments.

Sergithang gewog has a very small part (9.3% of the gewog area) falling inside the park, located in south-western corner of the park. The LFMP for this gewog was carried out by Tsirang Division and data for the areas in the park was shared with JSWNP. This small area has 22 individuals living in the park area. The LFMA of this small community is made of only one compartment with area of 401.23 hectares, which is further designated into 23.78 hectares of built-up areas, 234.94 hectares of protection circle and 142.51 hectares of production circle.

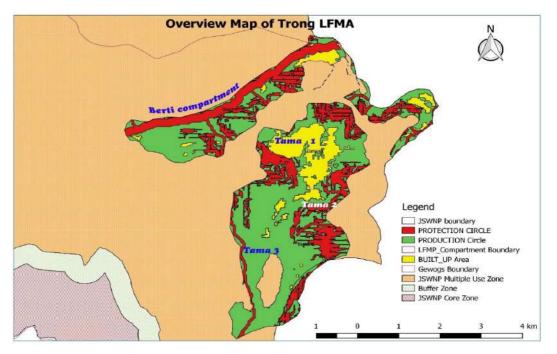


Figure 41: Overview map of Trong LFMA

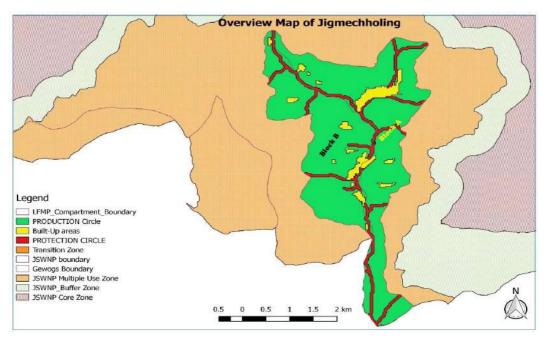


Figure 42: Overview map of Jigmechholing LFMA

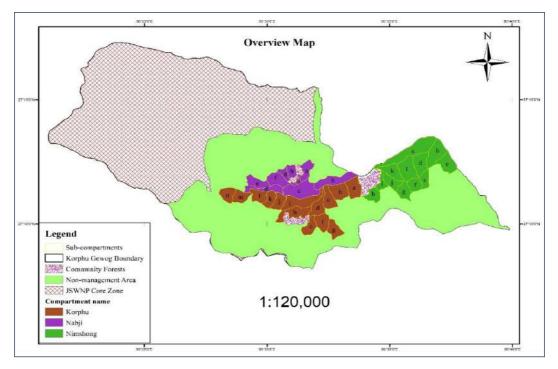


Figure 43: Overview Map of Korphu LFMA

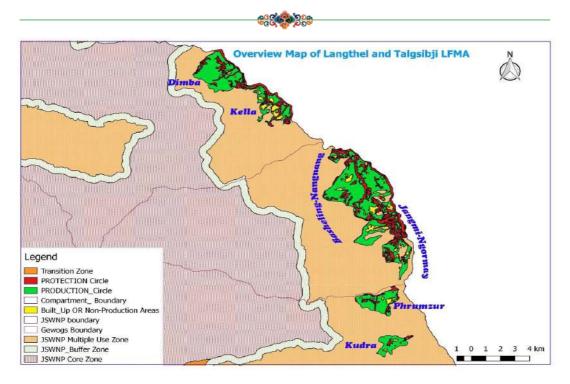


Figure 44: Overview Map of Langthel & Tangsibji LFMA

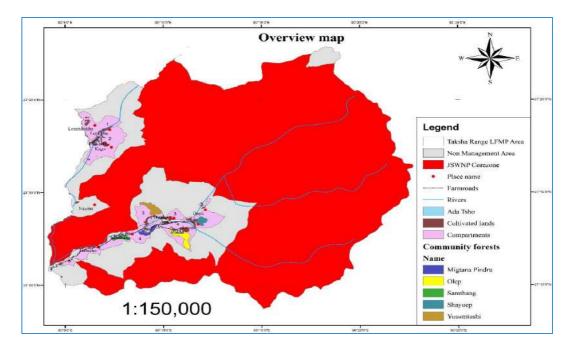


Figure 45: Overview map of Athang LFMA

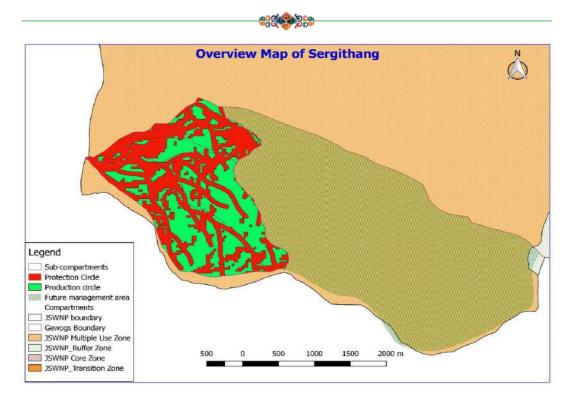


Figure 46: Overview Map of Sergithang LFMA

1.2. Forest Types and Condition

Forest type wise, Jigmechholing, Korphu and Tangsibji LFMAs have total dominance of hardwood forests. Trong and Langthel have major portion of hardwood forests at 84% and 78% respectively, and the remaining portion in Trong is formed by mixed hardwood-conifer (16%) and that in Langthel is formed of 20% mixed hardwood-conifer and 2% chirpine. Athang has 47% hardwood, 35% chirpine and 18% mixed hardwood-conifer. Sergithang has 72% chirpine, 13% mixed hardwood-conifer and 6% hardwood. The area wise forest type is summarized in the table below;

			LFMA	wise Fores	t types Dis	stributio	n (%)			
SI. No.	Gewog	Hem- lock	Fir	Spruce	Mixed Conifer	Blue- pine	Chirp- ine	Hard- wood	Mixed HC	Total
1	Trong	0	0	0	0	0	0	84	16	100
2	Jigmechhol- ing	0	0	0	0	0	0	100	0	100
3	Korphu	0	0	0	0	0	0	100	0	100
4	Langthel	0	0	0	0	0	2	78	20	100
5	Tangsibji	0	0	0	0	0	0	100	0	100
6	Athang	0	0	0	0	0	35	47	18	100
7	Sergithang	0	0	0	9	0	72	6	13	100

Table 15: LFMA-wise Forest Type Distribution.

Age class wise, Trong, Jigmechholing, Korphu, Tangsibji, Athang and Sergithang have over 50% of matured stands while Langthel has the same below 50 (47%). Langthel has the maximum over-matured stand at 5% while all other except Athang and Sergithang have 1% of over-matured stands. Immature stands are more or less uniformly distributed among all the LFMAs, between 18% to 38%. Young stands are mostly found in Langthel and Tangsibji (17% each), Jigmechholing (13%), Trong and Korphu (10% each) and minimum at Sergithang (3%).

Stand type wise, all LFMAs have 100% natural stands except Trong (99% natural and 1% plantation) and Langthel (97% natural and 3% plantation).

Canopy closure wise, dense forests are found in Trong and Langthel (13% each) and Jigmechholing (21%). Korphu and Tangsibji have less dense forest and Sergithang has no dense forest at all. Closed canopy is found in most LFMAs with over 50% canopy closure in all except Jigmechholing (42%) and Langthel (46%). Open forests are uniformly distributed among all LFMAs; between 27% to 38% distribution. Unstocked areas were mostly found in Tangsibji, Langthel and Jigmechholing with around 10% unstocked areas.

Stand condition wise, most areas were found to have good or average conditions. Poor forest condition was mostly observed in Tangsibji (23%), Trong (14%), Langthel (13%) and Jigmechholing and Korphu at 12% each. The details of age distribution, stand types, canopy closure and stand condition are presented in the table below;

SI.			Age D) istributi	on (%)		Stand	Type Dist	ributio	n (%)
No.	Gewog	Young	lmma- ture	Ma- ture	Over- mature	Total	Plan- taion	Natu- ral	Cop- pice	Total
1	Trong	10	22	67	1	100	1	99	0	100
2	Jigmechhol- ing	13	31	55	1	100	0	100	0	100
3	Korphu	10	38	51	1	100	0	100	0	100
4	Langthel	17	31	47	5	100	2	97	1	100
5	Tangsibji	17	18	64	1	100	0	100	0	100
6	Athang	6	32	62	0	100	0	100	0	100
7	Sergithang	3	19	78	0	100	0	100	0	100

SI.			Cano	py Closu	re (%)			Conditio	n (%)	
No.	Gewog	Dense	Closed	Open	Un- stocked	Total	Good	Aver- age	Poor	Total
1	Trong	13	56	27	5	100	45	41	14	100
2	Jigmechhol- ing	21	42	28	10	100	44	44	12	100
3	Korphu	6	55	31	8	100	57	31	12	100
4	Langthel	13	46	30	11	100	44	42	13	99
5	Tangsibji	5	52	32	12	101	33	44	23	100
6	Athang	11	52	36	2	100	70	28	2	100
7	Sergithang	0	66	34	0	100	34	66	0	100

Table 16: LFMA-wise Age and Stand Type distribution, Canopy Closure and Stand Condition.

Slope wise, majority of the areas falls under gentle and moderate slopes; however, Korphu, jigmechholing, Trong and Athang have over 20% of the area under steep slopes. Erosiveness was found to be stable to moderate in most of the areas with gentle and moderate slopes. Unstable aeras were mainly those falling along steep slopes. Similarly, soil cover was found to be high to moderate in the areas with gentle to moderate slope and stable areas. The details of slope, erosiveness and soil cover are laid in the table below;

			LFMA wi	se Site Co	ondition	s (% of are	ea)			
SI.			Slope		E	Irosivene	ss		Soil Cov	er
No.	Gewogs	Gentle	Moder- ate	Steep	Stable	moder- ate	Unsta- ble	High	Mod- erate	low
1	Trong	40	37	24	54	36	11	30	55	14
2	Jigmechhol- ing	38	39	23	43	37	19	32	54	13
3	Korphu	24	45	30	54	40	6	36	54	10
4	Langthel	28	55	17	53	37	10	35	50	15
5	Tangsibji	47	41	12	45	49	6	36	59	5
6	Athang	30	48	22	76	19	5	55	39	6
7	Sergithang	9	78	13	31	69	0	6	88	6

Table 17: LFMA-wise Site Condition description.

1.3. Forest Use

Various forest use identified under LFMP are grazing, sokshing and lopping at tow intensities, intensive and extensive. The LFMA wise forest use is summarized in the table below;

		LFMA wise F	OREST USE	(% of area)		
SI.		Inter	nsive Side U	se	Ex	tensive Side	e Use
No.	Gewog	Grazing	Sokshing	lopping	Grazing	Sokshing	lopping
1	Trong	35	1	8	16	2	9
2	Jigmechholing	41	5	39	16	2	6
3	Korphu	48	0	19	15	0	3
4	Langthel	52	6	32	22	0	22
5	Tangsibji	14	3	14	32	0	8
6	Athang	36	3	12	9	1	1
7	Sergithang	13	0	0	59	0	0

Table 18: LFMA-wise Forest Use.

1.4. NWFP and Firewood

Firewood here means the fallen trees and branches found lying on forest floor. It was found abundantly in 53% of Trong LFMA, 41% of Langthel, 38% in Jigmechholing, 31% in Korphu, 30% in Tangsibji and 25% in Athang. Sergithang had abundant firewood in only 3% of its LFMA. Sparse distribution of firewood was found in all LFMAs, anywhere between 12 to 37 percent of the areas. Bamboo was abundant in some areas and sparse in other areas in all of the LFMAs except Sergithang (0%). Cane was found in Jigmechholing, Trong, Athang and Korphu. Similarly, Daphne was more or less found in areas of all LFMP. The availability of these NTFPs in each LFMA is summarized in the table below;

		LFMA wis	e NWFP oc	currenc	e and Fire	wood (% of	area)	•	
SI.	Cowor		NWFP abu	Indant			NWFP sp	arse	
No.	Gewog	Firewood	Bamboo	Cane	Daphne	Firewood	Bamboo	Cane	Daphne
1	Trong	53	15	5	0	21	15	19	7
2	Jigmechhol- ing	38	12	10	1	37	18	18	1
3	Korphu	31	9	3	0	33	18	9	10
4	Langthel	41	8	0	2	19	13	4	13
5	Tangsibji	30	12	0	2	12	11	0	12
6	Athang	25	13	4	1	16	10	2	14
7	Sergithang	3	0	0	0	53	0	0	3

Table 19: LFMA-wise NWFP and Firewood availability

2. Future Management

2.1. Silviculture Measures and Management Options

Different types of forest management options as per the LFMP are Plantation, Thinning, Felling for timber, Felling for firewood and no disturbance (No activity). These are identified in the units of area (in hectare) and percentage; however, two or more of these management options could overlap in any given area.

For Trong LFMA, the dominant management option is No Activity (52% of the area), followed by felling for firewood (20%), Thinning (15%), felling for timber (8%) and plantation (7%). Since the communities of Tama and Berti already have CFs, the relatively smaller area for timber and firewood harvest is not seen as any issue. Compartment wise, Tama-1 compartment falls mostly near the settlement areas where majority of trees are in the diameter class of 10 to 20; therefore, mostly thinning is required in such areas. Other areas (around 40% of the compartment) are located in rugged terrain and no management operation is feasible. Such areas (256.5 hectares) are left out as No Activity zone. Open areas near the settlements require plantation for which an area of 47.3 hectares has been identified. This leaves only 6.8 hectares for timber production and 114.8 hectares for firewood production. For Tama-2 compartment, majority of the areas are inaccessible and too rugged for timber extraction; therefore, major part of the compartment (126.3 hectares) is left as No Activity area. 21 hectare is available for timber production, 73.7 hectares for firewood harvest, 84.2 hectares for thinning and 52.6 hectares for plantation. Tama-3 compartment has relatively more productive areas where 73.8 hectare is available for timber production, 44.3 hectare for firewood production, 88.6 hectares for thinning and 125.5 hectares is left as No Activity zone. Berti compartment is largely accessible; however, since the compartment encompasses the Berti river, some areas need to be protected as these forms riparian zone and river buffer has to be maintained. Overall, the compartment has 45.8 hectares for timber production, 129.9 hectares for firewood production, 30.6 hectares for thinning, another 30.6 hectares for plantation and 435.4 hectare is left as No Activity zone.

For Jigmechholing LFMA, the dominant management option is felling for firewood felling (51%) followed by timber felling (48%), Plantation (31%) and No activity in 26% of the area. The community of Reeti does not have any CF; however, the timber and firewood demand could be met from the large areas available for timber and firewood production. Compartment wise, the compartment 1 (A-block) has natural stands of matured hardwood species in good condition and the area is mostly feasible for future management interventions. An area of 166.1 hectare is available for timber production and 170.3 hectare for firewood production. Plantation is required in 128.7 hectares and thinning in 99.7 hectares. Only 78.9 hectares is left as No Activity zone. Compartment 2 (B-block), not different to first compartment, has an area of 140.7 hectares for timber production, 160.8 hectares for firewood production, 68.3 hectares for thinning, another 68.3 hectares for plantation and 56.3 hectares as No Activity zone.

For Korphu LFMA, felling for timber dominates the future management option with 43%, closely followed by 42% for thinning, felling for firewood (27%), and plantation (15%). Compartment wise, Nabji compartment has 81.2 hectares for felling (timber and firewood combined), 75.2 hectares for thinning and 8.8 hectares for plantation. Korphu compartment has 233 hectares for felling, 249.4 hectares for thinning and 26.4 hectares for plantation. Nimshong compartment has 176.2 hectares for felling, 174.2 hectares for thinning and 62.8 hectares for plantation.

For Langthel LFMA, Majority of area (51%) is for no activity. 17% of the area is to be managed for firewood production, 15% for timber production, 10% for plantation and 7% for thinning. Compartment wise, Kudra compartment has mostly matured to over matured stand of hardwood species such as Toona sp., Castanopsis sp., and Schima wallichii located along moderate slope, making it easier to harvest. The compartment has 43 hectares each for timber and firewood production, 14.3 hectares for thinning and 100.3 hectares is to be left as No Activity zone. Phrumzur compartment has 100 hectares for timber production, 71.4 hectares for firewood production, 28.6 hectares each for thinning and plantation and 128.5 hectares is to be left as No Activity zone. Both Kudra and Phrumzur compartments are not accessible by road and electricity due to which more firewood is used. Once the road is connected, these compartments have potential to meet timber and firewood demands of nearby localities. Jangbi compartment, which covers Jangbi and Wangling villages has 79.7 hectares each for timber production, firewood production and thinning, 95.6 hectares for plantation and 430.1 hectares is to be left as No Activity zone. Ngormay compartment which covers Ngormay, Bashaling, Shengling and Nangnag villages has 316.9 hectares for timber production, 316.9 hectares for firewood production, 83.4 hectares for thinning, 166.8 hectares for plantation and 850.6 hectares is to be left as No Activity zone.

For Tangsibji LFMA, Majority (73%) is to be left with no intervention, 14% to be managed for firewood production, 9% for plantation and 5% for timber harvest. The large portion for no activity is due to the fact that the LFMA has only two villages falling inside it and one of them (Dimba) has no people living in the village. Compartment wise, the only compartment, Kella-Dimba, has 22.4 hectares for timber production, 67.2 hectares for firewood production, 44.8 hectares for plantation and 358.3 hectares is to be left as No Activity zone.

For Athang LFMA, 36% of the area is to be managed for timber production, 34% for firewood production, 32% for thinning, and 13% for plantation. Compartment wise, Lhomtshokha-Kago compartment has 57.6 hectares for felling (timber and firewood combined), 32.8 hectares for thinning and 48.5 hectares for plantation. Lopokha-Phaktakha compartment has 53.6 hectares for felling, 69.9 hectares for thinning and 22.3 hectares for plantation. Lawa-Dayu-Kashacheko compartment has 26 hectares for felling, 30 hectares for thinning and 21.7 hectares for plantation. Rukha-Lamga-Migtena compartment has 168.5 hectares for felling, 187.5 hectares for thinning and 2.4 hectares for plantation. Samthang-Harachu compartment has 109.1 hectares for felling and 19.2 hectares for thinning.

For Sergithang LFMA, 41% (42.1 hectares) of the area is to be managed for timber harvest, 34% (35.6 hectares) for thinning, and 6% (6.5 hectares) for plantation. Refer Table 19 for details:

	LFM/	A wise Si	lvicultural	Measures (ar	ea in Ha. and	%)	
SI. No.	Gewog	Unit	Planting	Thinning	Felling (firewood)	Felling (timber)	No activity
1	Trong	Ha.	126.5	270.9	362.7	147.7	943.7
	Trong	%	7	15	20	8	52
2	liamachhalina	Ha.	197	168	331.1	306.8	135.2
2	Jigmechholing	%	31	26	51	48	21
3	Kawala	Ha.	337.5	947.3	600.4	954.2	0
5	Korphu	%	15	42	27	43	0
	Longthal	Ha.	291	206	511	439	1509.5
4	Langthel	%	10	7	17	15	51
_	To a south it	Ha.	44.8	0	67.2	22.4	358.3
5	Tangsibji	%	9	0	14	5	73
	A.1	Ha.	257	607.9	649.9	684.5	0
6	Athang	%	13	32	34	36	0
7	Coverithere	Ha.	6.2	35.2	0	42.5	0
7	Sergithang	%	6	34	0	41	0

Table 20: LFMA-wise Silvicultural Measures

2.2. Tree Marking and Silviculture

Tree marking is done in accordance with the "Tree Marking Guidelines" and the "Silvicultural Guidelines" prescribed by the Department of Forests and Park Services.

The silvicultural system applied is single tree selection system. The principle of negative selection is applied in all tending and thinning operations. Marking of mature trees for felling is permitted only when the immediate vicinity is sufficiently regenerated and the regeneration can grow up (low grazing pressure).

Grazing shall be controlled in all over-mature forests which are in the stage of natural regeneration.

Un-stocked and sparsely stocked parts shall be re-planted with principal local species (species selection according to prevalent forest type).

3. Yield Regulation

The principle of sustainability is to be ensured during LFMP implementation period; which means that resource extraction from the LFMA does not exceed the Annual Allowable Cut (AAC). AAC is the sustainable amount of timber that can be extracted from the area every year.

The sustainable annual allowable cut AACsust. for the management area is calculated as follows:

AAC_{sust} = Total standing volume / average rotation period.

3.1. Yield Regulation for Trong LFMA

 AAC_{sust} = total standing volume / average rotation period. = 2460 m³/year

Taking into account the forest type distribution the average production period for the forest management area is 89 years. The total standing volume is 220148 m³.

The overall production potential as determined by the forest resources assessment is 220148 m³. Dividing the overall production potential by the planning period of 10 years gives the silvicultural AAC:

 $AAC_{silv} = 220148/10 \text{ years} = 22014.8 \text{ m}^3/\text{year}$

As the AAC_{sust} is lower than the AAC_{silv} the AAC is fixed at the level of the AAC_{sust}

Therefore, the Annual Allowable Cut for the Trong LFMA is fixed at 2460 m³.

The AAC per ha is 2.4 m³.

Taking into account the fixed AAC of 2460 m3 then the total production potential of the forest management area will be used in a period of about 220148/2460 = 89 years. As this period is considerably longer than the planning period of 10 years, there will be no shortage in the availability of wood during the planning period.

3.2. Yield regulation for Jigmechholing LFMA

 $AAC_{sust.}$ = total standing volume / average rotation period. = 3538 m³/year

Taking into account the forest type distribution the average production period for the forest management area is 94 years. The total standing volume is 331840 m³.

The overall production potential as determined by the forest resources assessment is 331840 m³. Dividing the overall production potential by the planning period of 10 years gives the silvicultural AAC:

 $AAC_{silv} = 331840 / 10 \text{ years} = 33184 \text{ m}^3/\text{year}$

As the $AA_{Csust.}$ is lower than the $AAC_{silv.}$ the AAC is fixed at the level of the $AAC_{sust.}$

Therefore, the Annual Allowable Cut for the Jigmechholing LFMA is fixed at 3538 m³.

The AAC per ha is 4.0 m³.

Taking into account the fixed AAC of 3538 m³ then the total production potential of the forest management area will be used in a period of about 331840/3538 = 94 years. As this period is considerably longer than the planning period of 10 years, there will be no shortage in the availability of wood during the planning period.

3.3. Yield Regulation for Korphu LFMA

 AAC_{sust} = total standing volume / average rotation period. = 2817 m³/year

Taking into account the forest type distribution the average production period for the forest management area is 105 years. The total standing volume is 296226 m³.

The overall production potential as determined by the forest resources assessment is 296226 m³. Dividing the overall production potential by the planning period of 10 years gives the silvicultural AAC:

 $AAC_{silv} = 296226 / 10 \text{ years} = 29622.6 \text{ m}^3/\text{year}$

As the AAC_{sust} is lower than the AAC_{silv} the AAC is fixed at the level of the AAC_{sust}

Therefore, the Annual Allowable Cut for the Korphu LFMA is fixed at 2817 m³.

The AAC per ha is 1.3 m³.

Taking into account the fixed AAC of 2817 m3 then the total production potential of the forest management area will be used in a period of about 296226/2817 = 105 years. As this period is considerably longer than the planning period of 10 years, there will be no shortage in the availability of wood during the planning period.

3.4. Yield regulation for Langthel LFMA

 AAC_{sust} = total standing volume / average rotation period. = 4868 m³/year

Taking into account the forest type distribution the average production period for the forest management area is 104 years. The total standing volume is 507080 m³.

The overall production potential as determined by the forest resources assessment is 507080 m³. Dividing the overall production potential by the planning period of 10 years gives the silvicultural AAC:

 $AAC_{silv} = 507080 / 10 \text{ years} = 50708 \text{ m}^3/\text{year}$

As the $AAC_{sust.}$ is lower than the $AAC_{silv.}$ the AAC is fixed at the level of the $AAC_{sust.}$

Therefore, the Annual Allowable Cut for the Langthel LFMA is fixed at 4868 m³.

The AAC per ha is 2.6 m³.

Taking into account the fixed AAC of 4868 m^3 then the total production potential of the forest management area will be used in a period of about 507080/4868 = 104 years. As this period is considerably longer than the planning period of 10 years, there will be no shortage in the availability of wood during the planning period.

3.5. Yield regulation for Tangsibji LFMA

 $AAC_{sust.}$ = total standing volume / average rotation period. = 343 m³/year

Taking into account the forest type distribution the average production period for the forest management area is 101 years. The total standing volume is 34733 m³.

The overall production potential as determined by the forest resources assessment is 34733 m³. Dividing the overall production potential by the planning period of 10 years gives the silvicultural AAC:

 $AAC_{silv} = 34733 / 10 \text{ years} = 3473.3 \text{ m}^3/\text{year}$

As the AAC sust is lower than the AAC silv, the AAC is fixed at the level of the AA_{Csust} .

Therefore, the Annual Allowable Cut for the Tangsibji LFMA is fixed at 343 m³.

The AAC per ha is 1.6 m³.

Taking into account the fixed AAC of 343 m³ then the total production potential of the forest management area will be used in a period of about 34733/343 = 101 years. As this period is considerably longer than the planning period of 10 years, there will be no shortage in the availability of wood during the planning period.

3.6. Yield regulation for Athang LFMA

 AAC_{sust} = total standing volume / average rotation period. = 3075 m³/year

Taking into account the forest type distribution the average production period for the forest management area is 68 years. The total standing volume is 209760 m³.

The overall production potential as determined by the forest resources assessment is 209760 m³. Dividing the overall production potential by the planning period of 10 years gives the silvicultural AAC:

 $AAC_{silv} = 209760 / 10 \text{ years} = 20976 \text{ m}^3/\text{year}$

As the AAC_{sust} is lower than the AAC_{silv} the AAC is fixed at the level of the AAC_{sust}

Therefore, the Annual Allowable Cut for the Athang LFMA is fixed at 3075 m³.

The AAC per ha is 1.6 m³.

Taking into account the fixed AAC of 3075 m^3 then the total production potential of the forest management area will be used in a period of about 209760/3075 = 68 years. As this period is considerably longer than the planning period of 10 years, there will be no shortage in the availability of wood during the planning period.

3.7. Yield regulation for Sergithang LFMA

 AAC_{sust} = total standing volume / average rotation period. = 228 m³/year

Taking into account the forest type distribution the average production period for the forest management area is 99 years. The total standing volume is 22586 m³.

The overall production potential as determined by the forest resources assessment is 22586 m³. Dividing the overall production potential by the planning period of 10 years gives the silvicultural AAC:

 $AAC_{silv} = 22586 / 10 \text{ years} = 2258.6 \text{ m}^3/\text{year}$

As the AAC_{sust} is lower than the AAC_{silv} the AAC is fixed at the level of the AAC_{sust}

Therefore, the Annual Allowable Cut for the Sergithang LFMA is fixed at 228 m³.

The AAC per ha is 2.2 m³.

Taking into account the fixed AAC of 228 m³ then the total production potential of the forest management area will be used in a period of about 22586/228 = 99 years. As this period is considerably longer than the planning period of 10 years, there will be no shortage in the availability of wood during the planning period.

4. Demand-Supply Assessment

4.1. Demand-Supply Assessment of Rural Timber

The rural wood demand for each LFMA (excluding the extraordinary supply for example Dzong renovation, etc.) has been calculated as the average of the actual wood allotment for past 5 years. The data for each was derived from respective field offices where the allotment data is recorded. The annual timber supply potential is calculated by dividing the total production potential (in number of trees) by the number of years it will take to use up the production potential with the fixed AAC.

4.1.1. Timber Demand-Supply assessment of Trong LFMA

Rural timber allotment data from FY 2016-7 to 2020-21 was used to assess demand from the area. The derived from the allotment register maintained at Tingtibi range of the park.

	Der	nand Supply Asses	sment of Trong LFMA	
	I	Forest product type	es (Qty. in number)	
Year	Drashing	Cham	Tsim	Poles/Flag poles
2016-17	2	0	60	30
2017-18	5	0	0	90
2018-19	18	0	0	140
2019-20	100	0	0	0
2020-21	1	0	0	0
Total	126	0	60	260
Average/ Year	25.2	0	12	52
Product	Total Production Potential (Ntot)	Silvicult. Annual Potential	Sustainable Annual Supply Potential*	Annual Demand
Drashing/ shingleps	17356	1735.6	195.0	25.2
Chams	7130	713	80.1	0
Tsims	3276	327.6	36.8	12

*Remark: the total production potential divided by 89 years.

5197

Table 21: Demand-Supply Assessment (Timber) of Trong LFMA

58.4

52

6.4

519.7

Poles are in highest demand followed by Drashing and Tsims. No demand for cham was recorded. The sustainable supply potential of the LFMA is higher than the annual demand, which would be sufficient to meet the demand during the plan period.

Poles

4.1.2. Timber Demand-Supply assessment of Jigmechholing LFMA

Rural timber allotment data from FY 2014-5 to 2019-20 was used to assess demand from the area. The data was derived from the allotment register maintained at Jigmechholing range office of Sarpang Division.

	Demand Su	ipply Assessment o	of Jigmechholing LFM	Α	
Year	Fo	orest product types	; (Qty. in number)		
	Drashing	Cham	Tsim	Poles/ Flag poles	
2014-15	3	-	-	-	
2015-16	2	-	-	-	
2016-17	1	-	-	-	
2016-17	1	-	-	-	
2019-20	-	70	-	-	
Total	7	70	-	-	
Average/Year	1.75	14	-	-	
Product	Total Production Potential (Ntot)	Silvicult. Annual Potential	Sustainable Annual Supply Potential*	Annual Demand	Demano -Supply
Drashing/ shingleps	28002	2800.2	297.9	1.75	+296.1
Chams	4795	479.5	51.0	14	+37.0
Tsims	2317	231.7	24.6	-	+24.6
	1082	108.2	11.5	_	+11.5

Table 22: Demand-Supply Assessment (Timber) of Jigmechholing LFMA.

No record was available for the allotment of Tsim and poles. The demand for drashing and cham could also be higher than that in record, because due to remote location of Reeti community, no strict compliance to tree marking was followed in the past. However, the sustainable supply potential of the LFMA is much higher than the demand, which would be sufficient to cater to increasing demand for next ten years.

4.1.3. Timber Demand-Supply assessment of Korphu LFMA

Rural timber allotment data from 2013 to 2017 was used to assess demand from the area. The data was derived from the allotment register maintained at Nabji Range Office of the park.

	Demand Supply Assessment of Korphu LFMA					
	F	orest product typ	oes (Qty. in number)			
Year	Drashing	Cham	Tsim	Poles/Flag poles		
2013	45	0	0	265		
2014	15	0	0	192		
2015	36	0	0	235		
2016	121	14	0	449		
2017	70	252	160	607		
Total	287	266	160	1748		
Average/ Year	57.4	53.2	32	349.6		
Product	Total Production	Silvicult. An-	Sustainable Annual	Annual		

Product	Total Production Potential (Ntot)	Silvicult. An- nual Potential	Sustainable Annual Supply Potential*	Annual Demand	Demand -Supply
Drashing/ shingleps	24605	2460.5	234	57.4	+176.6
Chams	22479	2247.9	214	53.2	+160.8
Tsims	42622	4262.2	406	32	+374
Poles	103996	10399.6	990	349.6	+640.4
*Remark• the	total production poter	ntial divided by 105	vears		

total production potential divided by 105 years.

Table 23: Demand-Supply Assessment (Timber) of Korphu LFMA

Poles (fencing and flag) are on highest demand followed by Drashing and chams. Demand for Tsim is the lowest. For all of these the sustainable annual supply potential is much higher than the annual demand; therefore, the woods can be sustainably supplied from the LFMA during the plan period.

4.1.4. Timber Demand-Supply assessment of Langthel LFMA

Rural timber allotment data from FY 2016 to 2020 was used to assess demand from the area. The data was derived from the allotment register maintained at the Langthel range of the park.

	Dema	nd Supply Assess	ment of Langthel LFM/	4
	Fo	orest product type	es (Qty. in number)	
Year	Drashing	Cham	Tsim	Poles/Flag poles
2016	30	0	0	42
2017	9	0	0	43
2018	10	0	0	280
2019	15	0	0	160
2020	8	0	0	268
Total	72	0	0	793
Average/ Year	14.4	0	0	158.6
Product	Total Production	Silvicult. Annu-	Sustainable Annual	Annual Demand

Product	Total Production Potential (Ntot)	Silvicult. Annu- al Potential	Sustainable Annual Supply Potential*	Annual Demand	Demand -Supply
Drashing/ shingleps	35865	3586.5	344.9	14.4	+330.5
Chams	12509	1250.9	120.3	0	+120.3
Tsims	5965	596.5	57.4	0	+57.4
Poles	9510	951	91.4	158.6	-67.2
*Remark • the	total production pote	ntial divided by 104	Vears		

Remark: the total production potential divided by 104 years.

Table 24: Demand-Supply Assessment (Timber) of Langthel LFMA

Poles are at the highest demand, which is much higher than the sustainable supply potential. Therefore, it is advised that much of the demand for poles should be met from the existing CFs for all three communities of Tama, Takabi and Berti. Other resources such as Drashing, Cham and Tsims can be sustainably met from the LFMA.

4.1.5. Timber Demand-Supply assessment of Tangsibji LFMA

Rural timber allotment data from FY 2016 to 2020 was used to assess demand from the area. The data was derived from the allotment register maintained at the Langthel range of the park.

Demand Supply Assessment of Tangsibji LFMA						
	Fo	orest product type	s (Qty. in number)			
Year	Drashing	Cham	Tsim	Poles/Flag poles		
2013	9	0	24	0		
2014	2	0	8	0		
2015	4	0	0	192		
2016	6	0	6	50		
2017	1	0	0	140		
Total	22	0	38	382		
Average/ Year	4.4	0	7.6	76.4		

Product	Total Production Potential (Ntot)	Silvicult. Annu- al Potential	Sustainable Annual Supply Potential*	Annual Demand	Demand -Supply	
Drashing/ shingleps	2451	245.1	24.3	4.4	+19.9	
Chams	781	78.1	7.7	0	+7.7	
Tsims	4681	468.1	46.4	7.6	+38.8	
Poles	8916	891.6	88.3	76.4	+11.9	
×D / //						

*Remark: the total production potential divided by 101 years.

Table 25: Demand-Supply Assessment (Timber) of Tangsibji LFMA

The sustainable supply potential is much higher than the annual demand; therefore, the resources can be sustainable met from the LFMA during the plan period.

4.1.6. Timber Demand-Supply assessment of Athang LFMA

Rural timber allotment data from 2013 to 2017 was used to assess demand from the area. The data was derived from the allotment register maintained at Taksha Range Office and Adha dy. Range office of the park.

	Demai	nd Supply Assessme	ent of Athang LFMA		
	Foi	rest product types (Qty. in number)		
Year	Drashing	Cham	Tsim	Poles/ Flag poles	
2013	-	-	-	418	
2014	67	172	178	1295	
2015	123	154	240	703	
2016	12	30	45	977	
2017	35	-	-	1170	
Total	237	356	463	4563	
Average/ Year	47	71	93	913	
Product	Total Production Potential (Ntot)	Silvicult. Annual Potential	Sustainable Annual Supply Potential*	Annual Demand	Demano -Supply
Drashing/ shingleps	18388	1838.8	270	47	+223
Chams	46549	4654.9	685	71	+614
Tsims	14731	1473.1	217	93	+124
Poles	16554	1655.4	243	913	+670

Table 26: Demand-Supply Assessment (Timber) of Athang LFMA

Poles (fencing and flag) are on highest demand followed by Tshims and chams. Demand for Drashing is the lowest. For all of these the sustainable annual supply potential is much higher than the annual demand; therefore, the resources can be sustainably supplied from the LFMA during the plan period.

4.1.7. Timber Demand-Supply assessment of Sergithang LFMA

Rural timber allotment data from 2015 to 2019 was used to assess demand from the area. The data was fetched by Tsirang Forest Division.

Demand Supply Assessment of Sergithang LFMA							
	I	Forest product types	(Qty. in number)				
Year	Drashing	Cham	Tsim	Poles/Flag poles			
2015	0	0	0	0			
2016	0	40	0	0			
2017	15	0	0	50			
2018	25	0	135	0			
2019	55	0	0	50			
Total	95.0	40.0	135.0	100.0			
Average/ Year	19	8	27	20			

Product	Total Production Potential (Ntot)	Silvicult. Annual Potential	Sustainable Annual Supply Potential*	Annual Demand	Demand -Supply
Drashing/ shingleps	2476	247.6	25.0	19.0	+6.0
Chams	3146	314.6	31.8	8.0	+23.8
Tsims	4091	409.1	41.3	27.0	+14.3
Poles	8798	879.8	88.9	20.0	+68.9
*Remark: the	total production pote	ntial divided by 99 yea	irs.		

Table 27: Demand-Supply Assessment (Timber) of Sergithang LFMA.

The sustainable supply potential of the LFMA is higher than the demand, which would be sufficient to cater to the demand of small community for next ten years.

4.2. Demand-Supply Assessment of Firewood

Firewood demand is calculated in truckloads. To compare it with the supply potential it has to be converted into standing volume equivalent. The conversion factor applied is:

1 truckload is equivalent to 8 m3 standing volume.

Similar to the rural timber demand, the demand for firewood was calculated using the allotment data for same past five years in each LFMA.

	Demand Sup	ply Assessi	ment of Fire	wood of Tron	g LFMA			
Year	2016-17	2017-18	2018-19	2019-20	2020-21	Total	Average	
Firewood demand in TL (Truck Load)	0	40	0	8	3	51	10.2	
Firewood demand in Standing vol- ume (*)	0	320	0	64	24	408	81.6	
Total Production Potential Annual Supply Po- Annual Demand *Firewood demand in TL multiplied by 8.								
(Volume _{tot})	tential**	Demand	-Supply	**The total p	roduction p	otential	divided by	
136461	1533.3	81.6	1451.7	89 years				

4.2.1. Firewood Demand-Supply assessment of Trong LFMA

Table 28: Firewood Demand-Supply assessment of Trong LFMA.

As shown in table the sustainable annual supply potential of Trong LFMA is considerably higher (excess of 1451.7 m³/year) than the annual demand; therefore, firewood can be sustainably met from the LFMA during the plan period.

4.2.2. Firewood Demand-Supply assessment of Jigmechholing LFMA

De	mand Supply As	sessment o	f Firewood o	f Jigmech	holing Li	MA			
Year	2016	2017	2018	2019	2020	Total	Average		
Firewood demand in TL (Truck Load)	0	0	0	3	8	11	2.2		
Firewood demand in Standing vol- ume (*)	0	0	0	24	64	88	17.6		
Total Production Potential	Annual Demand								
(Volume _{tot})	ply Poten- tial**	Demand	Demand -Supply		**The total production potential divid-				
64116	682.1	17.6	664.5	ed by 94	years				

Table 29: Firewood Demand-Supply assessment of Jigmechholing LFMA

As shown in table the sustainable annual supply potential of Jigmechholing LFMA is considerably higher (excess of 664.5 m³/year) than the annual demand; therefore, firewood can be sustainably met from the LFMA during the plan period.

4.2.3. Firewood Demand-Supply assessment of Korphu LFMA

	Demand Supply	Assessment	of Firewood	of Korphu	LFMA			
Year	2013	2014	2015	2016	2017	Total	Average	
Firewood de- mand in TL (Truck Load)	15	16	17	28	59	135	27	
Firewood de- mand in Stand- ing volume (*)	120	128	136	224	472	1080	216	
Total Production Potential	Annual Supply Potential**	Annual	Demand	*Firewood demand in TL multiplied by 8.			nultiplied	
(Volume _{tot})	Potential**	Demand	-Supply	**The tota	**The total production potential			
107628	1025	216	+809	divided by 105 years				

Table 30: Firewood Demand-Supply assessment of Korphu LFMA

As shown in table the sustainable annual supply potential of Korphu LFMA is considerably higher than the annual demand; therefore, firewood can be sustainably met from the LFMA during the plan period.

	Demand Supply Assessment of Firewood of Langthel LFMA									
Year	2016	2017	2018	2019	2020	Total	Average			
Firewood demand in TL (Truck Load)	2	20	0	22	0	44	8.8			
Firewood demand in Standing volume (*)	16	160	0	176	0	352	70.4			
Total Produc- tion Potential	Annual Supply Potential**	Annual	Demand	*Firewood by 8.	d deman	d in TL m	ultiplied			
(Volume _{tot})	Potential**	Demand	-Supply	**The tota	al produc	tion pote	ential			
233930	2249.3	70.4	2178.9	divided by 104 years						

4.2.4. Firewood Demand-Supply assessment of Langthel LFMA

Table 31: Firewood Demand-Supply assessment of Langthel LFMA.

As shown in table the sustainable annual supply potential of Langthel LFMA is considerably higher (excess of 2178.9 m³/year) than the annual demand; therefore, firewood can be sustainably met from the LFMA during the plan period.

	Demand Supply	Assessment	of Firewood o	of Tangsib	ji LFMA		
Year	2016	2017	2018	2019	2020	Total	Average
Firewood de- mand in TL (Truck Load)	0	5	0	8	6	19	3.8
Firewood de- mand in Stand- ing volume (*)	0	40	0	64	48	152	30.4
Total Production Potential	Annual Supply	Annual	Demand	*Firewoo by 8.	d deman	id in TL m	nultiplied
(Volume _{tot})	Potential**	Demand	-Supply	**The total production potential			
17369	172.0	30.4	141.6	divided b	y 101 ye	ars	

4.2.5. Firewood Demand-Supply assessment of Tangsibji LFMA

Table 32: Firewood Demand-Supply assessment of Tangsibji LFMA.

As shown in table the sustainable annual supply potential of Tangsibji LFMA is considerably higher (excess of 141.6 m³/year) than the annual demand; therefore, firewood can be sustainably met from the LFMA during the plan period.

4.2.6. Firewood Demand-Supply assessment of Athang LFMA

	Demand Supp	ly Assessme	nt of Firewoo	d of Athan	g LFMA			
Year	2013	2014	2015	2016	2017	Total	Average	
Firewood demand in TL (Truck Load)	49	85	93	75	52	354	70.8	
Firewood de- mand in Stand- ing volume (*)	392	680	744	600	416	2832	566.4	
					~			
Total Produc- tion Potential	Annual Supply Potential**	Annual	Demand	*Firewood by 8.	demand	and in TL multiplied		
(Volume _{tot})	Potential**	Demand -Supply		**The tota	I product	tion poter	ntial divid-	
98112	1442.8	566.4	+876.4	ed by 68 y	ears	•		

Table 33: Firewood Demand-Supply assessment of Athang LFMA.

As shown in table the sustainable annual supply potential of Athang LFMA is considerably higher (excess of 876.4 m³/year) than the annual demand; therefore, firewood can be sustainably met from the LFMA during the plan period.

4.2.7. Firewood Demand-Supply assessment of Sergithang LFMA

Dema	and Supply Asses	sment of Fi	rewood of S	ergithan	g LFMA	•	
Year	2015	2016	2017	2018	2019	Total	Average
Firewood demand in TL (Truck Load)	0	0	0	6	5	11	2.2
Firewood demand in Standing volume (*)	0	0	0	48	40	88	17.6
Total Production Potential	Annual Supply	Annual	Demand	*Firewood demand in TL multiplied by 8.			
(Volume _{tot})	Potential**	Demand	-Supply	**The total production potential			
4082	41.2	17.6	23.6	divided by 99 years			

Table 34: Firewood Demand-Supply assessment of Sergithang LFMA.

As shown in table the sustainable annual supply potential of Sergithang LFMA is considerably higher (excess of 23.6 m³/year) than the annual demand; therefore, firewood can be sustainably met from the LFMA during the plan period.

5. Monitoring

Monitoring is important for the control of the AAC. Each tree, which is marked for felling must be recorded in the tree marking book. The tree marking book and allotment registers for all type of allotment (rural construction, renovation, and other purposes will be maintained at the range or beat office looking after each LFMA. All such allotments will be recorded in the register and yearly reports will be generated which will keep track of total demand, allotment and balance stock in each compartment.

The LFMP focal, who is also the head of FRMS (Forest Resources Management Section) at the headquarter will perform annual monitoring of the records.

It is also important to:

- ✓ Ensure utilization of subsidized timber for the genuine purposes for rural house building only.
- ✓ Plan rural marking activity consistently as per the schedule duly approved by DYT, which spells rural marking activity to be carried out annually.
- ✓ Conduct rural timber utilization monitoring regularly as per the Forest and Nature conservation Rules and Regulations (FNCRR), 2017.
- ✓ Maintain comprehensive data so as to facilitate monitoring efficiently.

Appendix 2. Floristic composition of JSWNP

Species	Species Name	Family	Langthel Range	Nabji Range	Taksha Range	Tingtibi Range
No.			RBA%	RBA%	RBA%	RBA%
	Evergreen Tree					
1	Castanopsis hystrix	Fagaceae	114.31	160.54	68.55	95.35
2	Quercus lamellosa	Fagaceae	81.85	69.97	46.72	
3	Quercus oxyodon	Fagaceae	77.71		128.06	4.40
4	Dodecadenia grandiflora	Lauraceae	74.17			
5	Quercus lanata	Fagaceae	66.31		38.89	
6	Ostodes paniculata	Euphorbiaceae	63.49	1.97	17.14	25.67
7	Sloanea tomentosa	Elaeocarpaceae	63.18	17.92		26.66
8	Michelia kisopa	Magnoliaceae	52.54			
9	Altingia excelsa	Hamamelidaceae	42.97	32.98		60.89
10	Bischofia javanica	Bischofiaceae	42.35		1.71	
11	Rhododendron grande	Ericaceae	40.78		4.20	
12	Sloanea dasycarpa	Elaeocarpaceae	40.29			
13	Drimycarpus racemosus	Anacardiaceae	36.12			1.72
14	Quercus semiserrata	Fagaceae	34.58		18.35	0.17
15	Castanopsis tribuloides	Fagaceae	29.26	194.30	0.01	0.06
16	Beilschmiedia assamica	Lauraceae	27.63		1.29	23.25
17	Toona ciliata	Meliaceae	24.37		43.07	40.40
18	Garcinia xanthochymus	Guttiferae	21.43		0.50	4.44
19	Quercus acutissima	Fagaceae	18.01			
20	Persea clarkeana	Lauraceae	16.57	5.44	75.51	
21	Neocinnamomum caudatum	Lauraceae	15.47	0.02	1.26	
22	Engelhardia spicata	Juglandaceae	15.18	164.35	49.19	0.42
23	Phoebe lanceolata	Lauraceae	14.62		0.32	7.24
24	Quercus glauca	Fagaceae	13.58	35.03	38.28	0.87
25	Aglaia perviridis	Meliaceae	13.47			
26	Talauma hodgsonii	Magnoliaceae	13.27		9.83	
27	Phoebe cathia	Lauraceae	12.75	1.37	0.72	0.04
28	Rapanea capitellata	Myrsinaceae	10.79	1.65	0.76	5.19
29	Glochidion nubigenum	Euphorbiaceae	10.64			
30	Ficus virens	Moraceae	10.44		22.52	
31	Wendlandia wallichii	Rubiaceae	10.34	0.10		1.18
32	Symplocos ramosissima	Symplocaceae	9.59	0.74	7.99	0.10
33	Macropanax dispermus	Araliaceae	9.53		9.98	0.07
34	Rhododendron arboreum	Ericaceae	8.59		62.35	0.00
35	Schima wallichii	Theaceae	8.50	27.13	39.47	11.63
36	Aphanamixis polystachya	Meliaceae	8.17	1.53	3.44	3.60
37	Meliosma simplicifolia	Sabiaceae	7.82			0.50

38	Aglaia lawii	Meliaceae	7.72			8.21
39	Syzygium cumini	Myrtaceae	7.55	5.92	14.06	26.84
40	Syzygium kurzii	Myrtaceae	7.44	7.02		35.41
41	Lithocarpus elegans	Fagaceae	7.37	28.09	0.95	60.32
42	Bridelia retusa	Euphorbiaceae	4.94		9.90	0.39
43	Acer oblongum	Aceraceae	4.71			
44	Symplocos glomerata	Symplocaceae	4.15	0.80	25.56	1.54
45	Daphniphyllum chartaceum	Daphniphyllaceae	3.46			0.00
46	Schefflera elata	Araliaceae	2.92	2.71		0.74
47	Castanopsis indica	Fagaceae	2.70			1.25
48	Gironniera cuspidata	Ulmaceae	2.51			
49	Styrax grandiflorus	Styracaceae	2.38	0.02		0.01
50	Eriobotrya hookeriana	Rosaceae	2.32		9.40	0.22
51	Ficus nervosa	Moraceae	2.23			
52	Daphniphyllum himalense	Daphniphyllaceae	2.15		31.26	
53	Persea minutiflora	Lauraceae	1.93			
54	Styrax serrulatus	Styracaceae	1.89	0.09		0.04
55	Eurya acuminata	Theaceae	1.83	17.80	5.91	0.47
56	Terminalia myriocarpa	Combretaceae	1.78	60.64	68.56	19.27
57	llex dipyrena	Aquifoliaceae	1.65		0.15	
58	Lithocarpus pachyphyllus	Fagaceae	1.64			50.90
59	Quercus semecarpifolia	Fagaceae	1.55			
60	Helicia nilagirica	Proteaceae	1.53	16.22		4.07
61	Lithocarpus fenestratus	Fagaceae	1.33		0.70	
62	Symplocos lucida	Symplocaceae	1.05		1.18	
63	Pandanus furcatus	Pandanaceae	0.97			2.43
64	Tetradium ruticarpum	Rutaceae	0.93			
65	Mangifera sylvatica	Anacardiaceae	0.70	0.02	29.50	12.10
66	Ficus cyrtophylla	Moraceae	0.65			0.06
67	Skimmia arborescens	Rutaceae	0.56		0.87	
68	Kydia calycina	Malvaceae	0.55			
69	Rhododendron hodgsonii	Ericaceae	0.50			
70	Neolitsea cuipala	Lauraceae	0.44	7.42		1.87
71	Schefflera impressa	Araliaceae	0.39		4.65	10.12
72	Cinnamomum bejolghota	Lauraceae	0.37	3.02	26.03	7.94
73	Ficus heteropleura	Moraceae	0.33		0.27	0.19
74	Phoebe attenuata	Lauraceae	0.32	0.09	11.66	70.56
75	llex kingiana	Aquifoliaceae	0.30	0.01		
76	Trevesia palmata	Araliaceae	0.26			
77	Ficus oligodon	Moraceae	0.26		0.32	0.02
78	Cordia grandis	Boraginaceae	0.25			
79	Dysoxylum excelsul	Meliaceae	0.23		1.10	
80	Ficus submulata	Moraceae	0.18			

81	Cinnadenia paniculata	Lauraceae	0.14			
82	Ficus subincisa	Moraceae	0.11		0.96	0.06
83	Macaranga peltata	Euphorbiaceae	0.10		10.75	
84	Actinodaphne obovata	Lauraceae	0.05			
85	Dobinea vulgaris	Anacardiaceae	0.04			
86	Cinnamomum impressinervium	Lauraceae	0.03	0.11	3.19	6.42
87	Gordonia excelsa	Theaceae	0.03	9.67		1.39
88	Bridelia tomentosa	Euphorbiaceae	0.03			
89	Macaranga pustulata	Euphorbiaceae	0.01	19.83		
90	Cryptocarya amygdalina	Lauraceae	0.01	0.02		3.89
91	Schima khasiana	Theaceae		130.48		6.05
92	Persea bootanica	Lauraceae		115.70		6.03
93	Beilschmiedia gammieana	Lauraceae		81.09		11.62
94	Cryptocarya bhutanica	Lauraceae		31.54		3.05
95	Exbucklandia populnea	Hamamelidaceae		29.79	2.51	26.71
96	Ailanthus integrifolia	Simaroubaceae		20.52		
97	Picrasma quassioides	Simaroubaceae		14.90		
98	Eriobotrya dubia	Rosaceae		11.75	2.54	
99	Litsea albescens	Lauraceae		10.50		
100	Myrica esculenta	Myricaceae		8.88	2.83	
101	Michelia doltsopa	Magnoliaceae		5.76	0.45	
102	Cinnamomum pauciflorum	Lauraceae		5.53		
103	Alcimandra cathcartii	Magnoliaceae		3.25		0.14
104	Persea duthiei	Lauraceae		3.21		0.08
105	Symplocos dryophila	Symplocaceae		2.59	21.08	
106	Michelia punduana	Magnoliaceae		1.85		3.04
107	Neolitsea foliosa	Lauraceae		0.46	8.65	
108	Persea odoratissima	Lauraceae		0.21	0.02	18.61
109	Carthium glabrum	Betulaceae		0.20		
110	Beilschmiedia dalzellii	Lauraceae		0.01		6.79
111	Callicarpa longifolia	Verbenaceae		0.01		0.01
112	Rhododendron arboreum	Ericaceae			107.48	
113	Syzygium claviflorum	Myrtaceae			52.56	0.07
114	Duabanga grandiflora	Sonneratiaceae			36.58	31.22
115	Quercus thomsoniana	Fagaceae			19.49	
116	Symplocos cochinchinensis	Symplocaceae			15.71	
117	Diploknema butyracea	Sapotaceae			8.81	
118	Cinnamomum glaucescens	Lauraceae			7.49	
119	Rhododendron kesangiae	Ericaceae			7.04	
120	Macaranga denticulata	Euphorbiaceae			6.67	
121	Terminalia chebula	Combretaceae			6.35	
122	Callicarpa arborea	Verbenaceae			6.24	
123	Mallotus philippensis	Euphorbiaceae			3.68	2.54

124	Cinnamomum tamala	Lauraceae			2.11	
125	Wendlandia grandis	Rubiaceae			1.41	
126	Baccaurea ramiflora	Euphorbiaceae			0.91	0.69
127	Saurauja nepaulensis	Actinidiaceae			0.78	
128	Rhododendron arboreum subsp. delavyi	Ericaceae			0.65	
129	Syzygium venosum	Myrtaceae			0.39	2.76
130	Pterospermum acerifolium	Sterculiaceae			0.31	11.03
131	Quercus oxyodon	Fagaceae			0.27	
132	Litsea glutinosa	Lauraceae			0.21	7.24
133	Brassaiopsis glomerulata	Araliaceae			0.19	0.35
134	Ficus semicordata	Moraceae			0.13	1.46
135	Polyalthia simiarum	Annonaceae			0.09	0.54
136	Dysoxylum grande	Meliaceae			0.08	
137	Castanopsis lanceifolia	Fagaceae				38.52
138	Pterospermum javanicum	Sterculiaceae				8.89
139	Knema tenuinervia	Myristicacea				7.67
140	Toona sureni	Meliaceae				5.33
141	Artocarpus chama	Moraceae				2.71
142	Gynocardia odorata	Flacourtiaceae				2.67
143	Heteropanax fragrans	Araliaceae				2.22
144	Mallotus nepalensis	Euphorbiaceae				1.22
145	Cleidion spiciflorum	Euphorbiaceae				1.18
146	Heliciopsis terminalis	Proteaceae				1.00
147	Litsea cubeba	Lauraceae				0.26
148	Lithocarpus dealbatus	Fagaceae				0.24
149	Artocarpus lacucha	Moraceae				0.17
150	Litsea elongata	Lauraceae				0.04
151	Symplocos untia	Symplocaceae				0.02
152	Tarennoidea wallichii	Rubiaceae				0.01
153	Beilschmiedia roxburghiana	Lauraceae				0.01
154	Ficus benjamina	Moraceae				0.01
155	Alstonia scholaris	Apocynaceae				
156	Bridelia pubescens	Euphorbiaceae				
157	Elaeocarpus sikkimensis	Elaeocarpaceae				
158	Elaeocarpus varunua	Elaeocarpaceae				
159	Macaranga indica	Euphorbiaceae				
160	Michelia velutina	Magnoliaceae				
161	Persea fructifera	Lauraceae				
162	Stereospermum colais	Bignoniaceae				
163	Wendlandia coriacea	Compositae				
	Sub-total		1250.15	1372.79	1270.76	852.81

	Conifer Tree					
164	Abies densa	Pinaceae	289.94		95.33	
165	Pinus wallichiana	Pinaceae	196.97		34.50	
166	Tsuga dumosa	Pinaceae	78.20		160.84	
167	Pinus roxburghii	Pinaceae	14.70		193.54	
168	Taxus baccata	Тахасеае	0.34		1.69	
169	Juniperus recurva	Cupressaceae	0.19		230.11	
170	Cupressus corneyana	Cupressaceae			86.03	
171	Pinus bhutanica	Pinaceae			14.21	
172	Podocarpus neriifolius	Podocarpaceae			2.67	
173	Picea spinulosa	Pinaceae				
	Sub-total		580.34		818.93	
	Deciduous Tree					
174	Alnus nepalensis	Betulaceae	40.16	80.16	39.92	
175	Hovenia acerba	Rhamnaceae	34.91			48.07
176	Juglans regia	Juglandaceae	30.33			
177	Erythrina stricta	Leguminosae	30.14			
178	Acer campbellii	Aceraceae	25.74	59.00	2.45	0.32
179	Casearia glomerata	Flacourtiaceae	23.88	2.82		0.08
180	Symplocos paniculata	Symplocaceae	17.77			
181	Quercus griffithii	Fagaceae	16.12		44.57	3.34
182	Albizia chinensis	Leguminosae	15.77			0.01
183	Dalbergia sericea	Leguminosae	10.59			11.62
184	Lyonia ovalifolia	Ericaceae	7.81	11.38	6.81	0.40
185	Tetracentron sinense	Tetracentraceae	5.94			
186	Erythrina arborescens	Leguminosae	5.87			
187	Fraxinus floribunda	Oleaceae	4.82	29.90	6.50	6.16
188	Magnolia campbellii	Magnoliaceae	4.52		55.41	
189	Parasassafras confertiflora	Lauraceae	3.49			
190	Corylus ferox	Betulaceae	2.95			
191	Brassaiopsis hainla	Araliaceae	2.93			
192	Lindera neesiana	Lauraceae	2.55		0.01	
193	Chukrasia tabularis	Meliaceae	2.42			
194	Tetradium fraxinifolium	Rutaceae	2.19			
195	Alangium chinense	Alangiaceae	1.85			
196	Sterculia villosa	Sterculiaceae	1.58		5.99	20.00
197	Gamblea ciliata	Araliaceae	1.54			
198	Brassaiopsis mitis	Araliaceae	1.38			
199	Macropanax undulatus	Araliaceae	1.14			
200	Lyonia villosa	Ericaceae	1.09		2.36	
201	Bauhinia purpurea	Leguminosae	1.01			
202	Pentapanax racemosus	Araliaceae	0.91			
203	Malus baccata	Rosaceae	0.83			

204	Vitex quinata	Verbenaceae	0.77			1.45
204	Nayariophyton zizyphifolium	Malvaceae	0.62		0.76	1.45
205		Flacourtiaceae	0.49		0.70	0.93
200	Casearia zeylanica Celtis tetrandra	Ulmaceae			E 04	
			0.43		5.04	0.01
208	Salix myrtillacea	Salicaceae	0.32			4.04
209	Wrightia arborea	Apocynaceae	0.29			4.91
210	Prunus napaulensis	Rosaceae	0.29			
211	Nathopodytes foetida	Valerianaceae	0.26			
212	Lindera pulcherrima	Lauraceae	0.21		1.17	1.28
213	Acer hookeri	Aceraceae	0.19		3.88	
214	Premna barbata	Verbenaceae	0.11		0.65	
215	Radermachera sinica	Bignoniaceae	0.07	1.06		1.46
216	Sorbus arachnoidea	Rosaceae	0.07			
217	Morus macroura	Moraceae		75.59	3.41	
218	Carpinus viminea	Betulaceae		23.95		
219	Betula alnoides	Betulaceae		20.29	4.40	23.58
220	Acrocarpus fraxinifolius	Leguminosae			52.57	
221	Betula utilis	Betulaceae			21.79	
222	Prunus carmesina	Rosaceae			18.79	0.05
223	Choerospondias axillaris	Anacardiaceae			7.77	7.43
224	Fraxinus paxiana	Oleaceae			7.59	
225	Rhus succedanea	Anacardiaceae			4.77	
226	Albizia procera	Leguminosae			4.07	
227	Bombax ceiba	Bombacaceae			3.01	
228	Lannea coromandelica	Anacardiaceae			2.98	
229	Prunus cornuta	Rosaceae			0.34	
230	Oroxylum indicum	Bignoniaceae			0.27	
231	Phyllanthus emblica	Euphorbiaceae			0.20	3.90
232	Lindera assamica	Lauraceae			0.20	
233	Alangium alpinum	Alangiaceae			0.12	
234	Ficus racemosa	Moraceae				22.12
235	Dendrocnide sp	Urticaceae				19.48
236	Elaeocarpus lanceifolius	Elaeocarpaceae				4.66
237	Albizia gamblei	Leguminosae				1.83
238	Heynea trijuga	Meliaceae				0.96
239	Aralia foliolosa	Araliaceae				0.37
240	Spondias pinnata	Anacardiaceae				0.31
241	Acer thomsonii	Aceraceae				0.18
242	Bauhinia variegata	Leguminosae				0.02
243	Elaeocarpus aristatus	Elaeocarpaceae				0.02
244	Acer sikkimense	Aceraceae				
245	Alangium chinensis	Alangiaceae				
246	Albizia lebbeck	Leguminosae				

247	Chisocheton cumingianus	Meliaceae				
248	Docynia indica	Rosaceae				
249	Enkianthus deflexus	Ericaceae				
250	Litsea sericea	Lauraceae				
251	Phyllanthus reticulatus	Verbenaceae				
252	Phyllanthus reticulatus	Euphorbiaceae				
253	Picrasma javanica	Simaroubaceae				
254	Prunus cerasoides	Rosaceae				
255	Prunus persica	Rosaceae				
256	Pyrus communis	Rosaceae				
257	Salix sikkimensis	Salicaceae				
258	Sorbus wallichii	Rosaceae				
259	Wightia speciosissima	Rubiaceae				
	Sub-total		306.37	304.16	307.78	184.94
	Evergreen Shrub					
260	Rhododendron bhutanense	Ericaceae	162.92			
261	Rhododendron aeruginosum	Ericaceae	28.24			
262	Rhododendron fulgens	Ericaceae	8.64		0.14	
263	Myrsine semiserrata	Myrsinaceae	4.94	0.45	2.89	0.31
264	Rhododendron campylocarpum	Ericaceae	2.68			
265	Rhododendron campanulatum	Ericaceae	2.61		1.55	
266	Cocculus laurifolius	Menispermaceae	2.37			
267	Rhododendron lanatum	Ericaceae	1.56			
268	Oreocnide rubescens	Urticaceae	1.43			0.51
269	Glochidion khasicum	Euphorbiaceae	0.99		0.79	0.03
270	Mitrephora harai	Annonaceae	0.95		2.07	
271	Rhododendron wallichii	Ericaceae	0.83			
272	Symplocos pyrifolia	Symplocaceae	0.73			
273	Microcos paniculata	Gramineae	0.73			
274	Euonymus grandiflorus	Celastraceae	0.71			
275	Viburnum cylindricum	Caprifoliaceae	0.62		11.26	
276	Glochidion acuminatum	Euphorbiaceae	0.59			0.74
277	Maesa indica	Myrsinaceae	0.56		0.33	
278	Flueggea virosa	Euphorbiaceae	0.38			0.06
279	Lasiococca symphylllifolia	Boraginaceae	0.36			
280	Maytenus hookeri	Celastraceae	0.30	0.61		0.04
281	Trema tomentosa	Ulmaceae	0.25			
282	Eurya cerasifolia	Theaceae	0.23		0.15	0.25
283	Randia Spinusa	Bignoniaceae	0.23			
284	Boehmeria glomerulifera	Urticaceae	0.23			
285	Strobilanthes himalayana	Acanthaceae	0.21		0.22	0.01
286	Tabernaemontana divaricata	Apocynaceae	0.18			0.14
287	Grewia sepiaria	Tiliaceae	0.18			

288	Rochmoria magrophylla	Urticaceae	0.17		0.72	0.11
289	Boehmeria macrophylla	Celastraceae	0.17	1.90	0.72	12.47
209	Microtropis discolor		0.13			12.47
	Capparis acutifolia	Capparaceae		0.01	2.14	
291	Glochidion velutinum	Euphorbiaceae	0.11	0.21	2.14	0.01
292	Maesa chisia	Myrsinaceae	0.09	0.21		0.01
293	Dichroa febrifuga	Hydrangeaceae	0.08			
294	Ligustrum confusum	Oleaceae	0.08			
295	Maytenus kurzii	Celastraceae	0.07	0.13	0.01	
296	Maytenus rufa	Celastraceae	0.07			
297	Bridelia sikkimensis	Euphorbiaceae	0.04			
298	Strobilanthes cusia	Acanthaceae	0.03	0.05		
299	Strobilanthes helicta	Acanthaceae	0.02		0.01	
300	Scurrula elata	Loranthaceae	0.01			
301	Cotoneaster bacillaris	Rosaceae	0.01			
302	Pilea hookeriana	Urticaceae	0.01			
303	Vaccinium subdissitifolium	Ericaceae	0.01			
304	Ardisia macrocarpa	Myrsinaceae	0.01	0.44		
305	Leptoboea multiflora	Gesneriaceae	0.01			
306	Luculia gratissima	Rubiaceae	0.01		0.02	
307	Piper pedicellatum	Piperaceae	0.01	0.03		
308	Smilax myrtillus	Smilacaceae	0.00			
309	Salacia oblonga	Alismataceae	0.00			
310	Agapetes serpens	Ericaceae	0.00			
311	Periploca calophylla	Asclepiadaceae	0.00			
312	Elatostema integrifolium	Urticaceae	0.00			
313	Agapetes smithiana	Ericaceae	0.00			
314	Vaccinium retusum	Ericaceae	0.00			
315	Strobilanthes capiata	Acanthaceae	0.00			
316	Strobilanthes divaricata	Acanthaceae	0.00			
317	Camellia kissii	Theaceae		2.26		
318	Photinia integrifolia	Rosaceae		0.60		
319	Strobilanthes claviculata	Acanthaceae		0.39		
320	Phlogacanthus pubinervius	Acanthaceae		0.29	0.05	
321	Nostolachma khasiana	Rubiaceae		0.16		
322	Dendrocnide sinuata	Urticaceae		0.16		0.02
323	Solanum pseudocapsicum	Solanaceae		0.15		
324	Croton caudatus	Euphorbiaceae		0.02		1.25
325	Citrus medica	Rutaceae		0.01		
326	Rhododendron thomsonii	Ericaceae			2.41	
327	Rhus paniculata	Anacardiaceae			1.52	
328	Pieris formosa	Ericaceae			0.92	
329	Glycosmis pentaphylla	Rutaceae			0.79	
330	Alstonia sebusi	Apocynaceae			0.35	

331	Micromelum integerrimum	Rutaceae		0.34	
332	Gaultheria griffithiana	Ericaceae		0.29	
333	Metrephora harai	Araliaceae		0.28	
334	Rhododendron keysii	Ericaceae		0.20	
335	Rhododendron barbatum	Ericaceae		0.17	
336	Oxyspora paniculata	Melastomataceae		0.15	
337	Woodfordia fruticosa	Lythraceae		0.07	
338	Rubus ellipticus	Rosaceae		0.04	
339	Randia spinosa	Bignoniaceae		0.04	0.02
340	, Mahonia nepaulensis	Berberidaceae		0.03	
341	, Boehmeria ternifolia	Urticaceae		0.03	
342	Sarcococca wallichii	Вихасеае		0.03	
343	Spermadictyon suaveolens	Rubiaceae		0.03	
344	Vernonia volkameriifolia	Compositae		0.03	
345	Cotoneaster microphyllus	Rosaceae		0.03	
346	Colebrookea oppositifolia	Labiatae		0.02	
347	Osyris lanceolata	Santalaceae		0.02	
348	Rhododendron maddenii	Ericaceae		0.01	
349	Gaultheria fragrantissima	Ericaceae		0.00	
350	Justicia adhatoda	Acanthaceae			0.56
351	Lasianthus biermannii	Rubiaceae			0.44
352	Skimmia laureola	Rutaceae			0.37
353	Baliospermum densiflorum	Euphorbiaceae			0.24
354	Floscopa scandens	Commelinaceae			0.07
355	Ficus squamosa	Moraceae			0.02
356	Debregeasia wallichiana	Urticaceae			0.02
357	Phlogacanthus thyrsiformis	Acanthaceae			0.01
358	Ardisia bhotanica	Myrsinaceae			0.01
359	Glochidion lanceolarium	Euphorbiaceae			0.00
360	Agapetes auriculata	Ericaceae			
361	Agapetes saligna	Ericaceae			
362	Agapetes variegata	Ericaceae			
363	Brugmansia suaveolens	Solanaceae			
364	Citrus limon	Rutaceae			
365	Debregeasia longifolia	Urticaceae			
366	Ficus hederacea	Moraceae			
367	Miliusa roxburghiana	Annonaceae			
368	Poikilospermum suavolens	Urticaceae			
369	Psychotria calocarpa	Rubiaceae			
370	Psychotria denticulata	Rubiaceae			
371	Reissantia arborea	Hippocrateaceae			
372	Rhynchotechum vestitum	Gesneriaceae			
373	Schefflera tenuis	Araliaceae			

374	Smilax rigida	Smilacaceae				
375	Vaccinium vaccinaceum	Ericaceae				
376	Crotalaria cytisoides	Leguminosae				
377	Desmodium motorium	Leguminosae				
378	Gynura bicolor	Compositae				
379	Gynura nepalensis	Compositae				
380	Hibiscus lobatus	Malvaceae				
381	Lindernia ruellioides	Scrophulariaceae				
382	Periploca callophylla	Labiatae				
383	Phyllanthus urinaria	Euphorbiaceae				
384	Podophyllum hexandrum	Podophyllaceae				
	Sub-total		225.82	7.88	30.15	17.71
	Deciduous Shrub					
385	Drypetes indica	Euphorbiaceae	12.54	0.58		7.39
386	Viburnum erubescens	Caprifoliaceae	2.29	0.40	0.39	
387	Vitex negundo	Verbenaceae	2.19			
388	Prunus rufa	Rosaceae	1.79			
389	Hydrangea heteromalla	Hydrangeaceae	1.55		0.44	
390	Viburnum nervosum	Caprifoliaceae	1.52			
391	Rosa sericea	Rosaceae	1.38		4.54	
392	Murraya koenigii	Rutaceae	0.93		1.01	2.50
393	Indigera dosua	Bignoniaceae	0.34		0.33	
	Daphne bholua	Thymelaeaceae	0.28	0.02	1.47	
394	Sambucus nigra	Caprifoliaceae	0.24			
395	Prunus undulata	Rosaceae	0.15			
396	Solanum erianthum	Solanaceae	0.13			
397	Edgeworthia gardneri	Thymelaeaceae	0.10			
398	Hydrangea stylosa	Hydrangeaceae	0.10			
399	Potentilla arbuscula	Rosaceae	0.10			
400	Philadelphus tomentosus	Philadelphaceae	0.10			
401	Daphne involucrata	Thymelaeaceae	0.07	0.08		
402	Lepisanthes senegalensis	Sapindaceae	0.07			
403	Sorbus microphylla	Rosaceae	0.06		2.71	
404	Elaeagnus conferta	Elaeagnaceae	0.06		0.38	
405	Sterculia hamiltonii	Sterculiaceae	0.06		0.50	0.01
406	Buddleja paniculata	Buddlejaceae	0.05		0.01	
407	Sophora wightii	Leguminosae	0.05			
408	Elaeagnus parvifolia	Elaeagnaceae	0.04			
409	Solanum spirale	Solanaceae	0.04		0.00	
410	Zanthoxylum armatum	Rutaceae	0.03		1.30	
411	Hibiscus fragrans	Meliaceae	0.03			
412	Hydrangea aspera	Hydrangeaceae	0.02			0.06
413	Berberis asiatica	Berberidaceae	0.02		0.01	

414	Buddleja asiatica	Buddlejaceae	0.02			
415	Berberis aristata	Berberidaceae	0.02			
416	Ribes griffithii	Grossulariaceae	0.02			
417	Hypericum choisianum	Hypericaceae	0.02			
418	Morus australis	Moraceae	0.02			
419	Lonicera quinquelocularis	Caprifoliaceae	0.01			
420	Rubus pentagonus	Rosaceae	0.01			
421	Rubus thomsonii	Rosaceae	0.01			
422	Rhus chinensis	Anacardiaceae		4.37	1.57	
423	Psilanthus bengalensis	Rubiaceae		0.15		0.11
424	Clerodendrum colebrookeanum	Verbenaceae		0.05		
425	Cannabis sativa	Cannabceae		0.02		
426	Aconogonon molle	Polygonaceae		0.01		
427	Euphorbia royleana	Euphorbiaceae			8.51	
428	Grewia eriocarpa	Tiliaceae			3.54	6.78
429	Coriaria napalensis	Coriariaceae			0.69	
430	Desmodium elegans	Leguminosae			0.64	2.89
431	Casearia graveolens	Flacourtiaceae			0.52	
432	Elaeagnus pyriformis	Elaeagnaceae			0.43	
433	Berberis hookeri	Berberidaceae			0.10	
434	Piptanthus nepalensis	Leguminosae			0.07	
435	Leea asiatica	Leeaceae			0.07	
436	Clerodendrum japonicum	Verbenaceae			0.03	
437	Leptodermis stapfiana	Rubiaceae			0.02	
438	Phyllanthus clarkei	Euphorbiaceae			0.01	
439	Maddenia himalaica	Rosaceae			0.01	
440	Ficus hispida	Moraceae			0.01	
441	Brandisia hancei	Compositae			0.00	
442	Elaeagnus infundibularis	Elaeagnaceae			0.00	
443	Croton joufra	Euphorbiaceae				6.37
444	Pterygota alata	Sterculiaceae				3.47
445	Grewia sapida	Tiliaceae				1.76
446	Sophora velutina	Leguminosae				0.16
447	Mackaya indica	Acanthaceae				0.02
448	Desmodium caudatum	Leguminosae				0.02
449	Chromolaena odoratum	Compositae				0.00
450	Rubus lineatus	Rosaceae				0.00
451	Ficus hirta	Moraceae				0.00
452	Aconogonon polystachyum	Polygonaceae				
453	Berberis cooperi	Cornaceae				
454	Berberis griffithiana	Berberidaceae				
455	Berberis praecipua	Berberidaceae				
456	Clerodendron serratum	Capparaceae				

457	Clerodendrum hastatum	Verbenaceae		
458	Clerodendrum viscosum	Verbenaceae		
459	Clerodrendrum colebrookeanum	Verbenaceae		
460	Corylopsis himalayana	Hamamelidaceae		
461	Crotalaria cytisoides	Araliaceae		
	Daphne sureil			
462 463		Thymelaeaceae		
	Desmodium gangeticum	Leguminosae		
464	Desmodium mortonii	Leguminosae		
465	Desmodium oblongum	Leguminosae		
466	Desmodium triquetrum	Leguminosae		
467	Gaultheria nummularioides	Ericaceae		
468	Gaultheria semi-infera	Ericaceae		
469	Gaultheria trichophylla	Ericaceae		
470	Hypericum gramineum	Hypericaceae		
471	Hypericum hookerianum	Hypericaceae		
472	Indegofera decora	Bignoniaceae		
473	Indigofera autopuperea	Leguminosae		
474	Indigofera dosua	Leguminosae		
475	Leea guineensis	Leeaceae		
476	Leptodermis stafiana	Rubiaceae		
477	Ligustrum compactum	Oleaceae		
478	Melastoma normale	Melastomataceae		
479	Meyna spinosa	Rubiaceae		
480	Neillia thyrsiflora	Rosaceae		
481	Osbeckia nepalensis	Melastomataceae		
482	Pavetta indica	Passifloraceae		
483	Polygayla arillata	Polygalaceae		
484	Rhododendron virgatum	Ericaceae		
485	Ribes glaciale	Grossulariaceae		
486	Ribes himalense	Grossulariaceae		
487	Ricinus communis	Euphorbiaceae		
488	Rubus alexeterius	Rosaceae		
489	Rubus indotibetanus	Rosaceae		
490	Rubus pectinariodes	Rosaceae		
491	Sambucus javanica	Caprifoliaceae		
492	Sambucus nigra	Caprifoliaceae		
493	Scurrula pulverulenta	Loranthaceae		
494	Solanum villosum	Solanaceae		
495	Spiraea bella	Rosaceae		
496	Viburnum continifolium	Caprifoliaceae		
497	Viburnum mullaha	Caprifoliaceae		
498	Zanthoxylum oxyphyllum	Rutaceae		
499	Actaea acuminata	Ranunculaceae		

	Sub-total		26.45	5.68	29.34	31.54
	Climbers					
500	Euonymus vagans	Celastraceae	2.42			
501	Gnetum montanum	Gnetaceae	0.61		0.75	
502	Hedera nepalensis	Araliaceae	0.51			
503	Rhamnus virgatus	Rhamnaceae	0.51			
504	Bauhinia scandens	Leguminosae	0.41			
505	Beaumontia grandiflora	Apocynaceae	0.41		0.02	0.00
506	Tetrastigma serrulatum	Vitaceae	0.32		0.23	0.45
507	Tetrastigma leucostaphylum	Vitaceae	0.31			3.12
508	Tetrastigma corymbosum	Vitaceae	0.29			0.62
509	Caesalpinia cucullata	Leguminosae	0.26			
510	Trichosanthes lepiniana	Cucurbitaceae	0.24			0.06
511	Dalbergia pinnata	Leguminosae	0.18			0.01
512	Toddalia asiatica	Rutaceae	0.18		0.04	
513	Acacia pennata	Leguminosae	0.18			
514	Piper mullesua	Piperaceae	0.13			0.13
515	Rhaphidophora decursiva	Araceae	0.12	0.00		0.05
516	Piper longum	Piperaceae	0.09	0.06		0.04
517	Paramignya monophylla	Rutaceae	0.09			
518	Piper betleoides	Piperaceae	0.07		0.01	
519	Ficus sarmentosa	Moraceae	0.07			
520	Gongronema ventricosum	Asclepiadaceae	0.05			
521	Smilax elegans	Smilacaceae	0.05			
522	Schefflera roxburghii	Araliaceae	0.04			
523	Combretum flagrocarpum	Combretaceae	0.04			0.00
524	Pterolobum macropterum	Leguminosae	0.03			
525	Tetrastigma aplinianum	Vitaceae	0.02			
526	Cryptolepis buchanani	Asclepiadaceae	0.02			0.01
527	Piper suipigua	Piperaceae	0.01			
528	Derris polystachya	Leguminosae	0.01			
529	Poikilospermum lanceolatum	Urticaceae	0.01			
530	Clematis montana	Ranunculaceae	0.01			
531	Rubus efferatus	Rosaceae	0.01			
532	Aristolochia griffithii	Aristolochiaceae	0.01			
533	Rubia wallichiana	Rubiaceae	0.01		0.00	
534	Clematis acutangula	Ranunculaceae	0.01			
535	Stilbanthus scandens	Amaranthaceae	0.01			
536	Rubia manjith	Rubiaceae	0.00			
537	Toxocarpus aurantiacus	Asclepiadaceae	0.00		2.19	0.16
538	Dioscorea belophylla	Dioscoreaceae	0.00			
539	Clematis smilacifolia	Ranunculaceae	0.00			
540	Clematis buchananiana	Ranunculaceae	0.00			

			0.00		0.01	
541	Clematis acuminata	Ranunculaceae	0.00		0.01	
542	Aristolochia platanifolia	Aristolochiaceae	0.00			
543	Aeschynanthus superbus	Gesneriaceae	0.00			
544	Celastrus monospermus	Celastraceae	0.00			
545	Cyclea bicristata	Menispermaceae	0.00			
546	Jasminum dispermum	Oleaceae	0.00			
547	Schefflera bengalensis	Araliaceae		0.06		
548	Actinidia callosa	Actinidiaceae			0.94	
549	Holboellia augustifolia	Apocynaceae			0.35	
550	Berchemia floribunda	Rhamnaceae			0.16	
551	Tetrastigma objectum	Vitaceae			0.14	
552	Uncaria scandens	Rubiaceae			0.09	
553	Ficus heterophylla	Moraceae			0.05	
554	Paederia foetida	Rubiaceae			0.02	
555	Smilax menispermoidea	Smilacaceae			0.01	
556	Schisandra grandiflora	Schisandraceae			0.01	
557	Rhaphidophora hookeri	Araceae			0.01	
558	Rubus paniculatus	Rosaceae			0.00	
559	Dioscorea pubera	Dioscoreaceae			0.00	
560	Tetrastigma planicaule	Vitaceae				0.82
561	Rhamnus napalensis	Rhamnaceae				0.03
562	Chonemorpha fragrans	Apocynaceae				0.02
563	Tetrastigma rumicispermum	Vitaceae				0.01
564	Goniothalamus sesquipedalis	Asclepiadaceae				0.01
565	Caesalpinia crista	Sterculiaceae				0.01
566	Smilax ferox	Smilacaceae				0.01
567	Smilax lanceifolia	Smilacaceae				0.01
568	Tetrastigma bracteolatum	Vitaceae				0.00
569	Toxocarpus himalensis	Asclepiadaceae				0.00
570	Derris recticulata	Leguminosae				0.00
571	Actinidia strigosa	Actinidiaceae				
572	Aeshynanthus sikkimensis	Hippocastanaceae				
573	Argyreia venusta	Convolvulaceae				
574	Aristolochia tagala	Aristolochiaceae				
575	Aschynanthus sikkimensis	Aristolochiaceae				
576	Celastrus stylosus	Celastraceae				
577	Cissus rapanda	Vitaceae				
578	Euchrestra horsfieldii	Leguminosae				
579	Flemingia fruticulosa	Leguminosae				
580	Hodgsonia macrocarpa	Cucurbitaceae				
581	Hoelboellia latifolia	Cucurbitaceae				
582	Holmskioldia sanguinea	Verbenaceae				
	-					
583	Lonicera acuminata	Caprifoliaceae				

584	Millettia extensa	Leguminosae				
585	Mimosa himalayana	Leguminosae				
586	Muriosa minalayana Mucuna imbricata	Leguminosae				
		-				
587	Mucuna macrocarpa Paederia cruddasiana	Leguminosae				
588		Rubiaceae				
589	Piper sylvaticum	Piperaceae				
590	Porana racemosa	Convolvulaceae				
591	Pueraria edulis	Leguminosae				
592	Pueraria lobata	Leguminosae				
593	Smilax lanceifolia	Elaeocarpaceae				
594	Smilax aspericaulis	Smilacaceae				
595	Smilax minutiflora	Smilacaceae				
596	Smilax prolifera	Smilacaceae				
597	Stephania glabra	Thymelaeaceae				
598	Stephania glandulifera	Menispermaceae				
599	Thunbergia coccinea	Acanthaceae				
600	Trachelospermum lucidum	Apocynaceae				
601	Trichosanthes cordata	Cucurbitaceae				
602	Dioscorea bulbifera	Dioscoreaceae				
603	Rhaphidophora grandis	Araceae				
604	Rhophidophora hookeri	Commelinaceae				
605	Rubia hispidicaulis	Rubiaceae				
606	Stephania glabra	Menispermaceae				
607	Thladiantha cordifolia	Cucurbitaceae				
608	Thunbergia grandiflora	Acanthaceae				
	Sub-total		7.76	0.13	5.02	5.56
	Sub-total Evergreen Palm		7.76	0.13	5.02	5.56
609		Arecaceae(Palmae)	7.76 0.59	0.13	5.02 0.53	5.56
609 610	Evergreen Palm	Arecaceae(Palmae) Arecaceae(Palmae)		0.13		
	Evergreen Palm Wallichia densiflora		0.59	0.13		0.01
610	Evergreen Palm Wallichia densiflora Calamus acanthospathus	Arecaceae(Palmae)	0.59 0.03	0.13 		0.01
610 611	Evergreen Palm Wallichia densiflora Calamus acanthospathus Caryota urens	Arecaceae(Palmae) Arecaceae(Palmae)	0.59 0.03			0.01
610 611 612	Evergreen Palm Wallichia densiflora Calamus acanthospathus Caryota urens Cythea spinusa	Arecaceae(Palmae)Arecaceae(Palmae)Gramineae	0.59 0.03	5.80	0.53	0.01 0.06 0.78
610 611 612 613	Evergreen PalmWallichia densifloraCalamus acanthospathusCaryota urensCythea spinusaPlectocomia himalayana	Arecaceae(Palmae)Arecaceae(Palmae)GramineaeArecaceae(Palmae)	0.59 0.03	5.80	0.53	0.01 0.06 0.78 0.04
610 611 612 613 614	Evergreen Palm Wallichia densiflora Calamus acanthospathus Caryota urens Cythea spinusa Plectocomia himalayana Calamus latifolius	Arecaceae(Palmae) Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Arecaceae(Palmae) Arecaceae(Palmae)	0.59 0.03	5.80	0.53	0.01 0.06 0.78 0.04
610 611 612 613 614 615	Evergreen PalmWallichia densifloraCalamus acanthospathusCaryota urensCythea spinusaPlectocomia himalayanaCalamus latifoliusCycas pectinata	Arecaceae(Palmae) Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Arecaceae(Palmae) Cycadaceae	0.59 0.03	5.80	0.53	0.01 0.06 0.78 0.04
610 611 612 613 614 615 616	Evergreen Palm Wallichia densiflora Calamus acanthospathus Caryota urens Cythea spinusa Plectocomia himalayana Calamus latifolius Cycas pectinata Phoenix rupicola	Arecaceae(Palmae) Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Arecaceae(Palmae) Cycadaceae Arecaceae(Palmae)	0.59 0.03	5.80	0.53	0.01 0.06 0.78 0.04 0.05
610 611 612 613 614 615 616 617	Evergreen PalmWallichia densifloraCalamus acanthospathusCaryota urensCythea spinusaPlectocomia himalayanaCalamus latifoliusCycas pectinataPhoenix rupicolaCythea spinosa	Arecaceae(Palmae)Arecaceae(Palmae)GramineaeGramineaeArecaceae(Palmae)Arecaceae(Palmae)CycadaceaeArecaceae(Palmae)Gramineae	0.59 0.03	5.80	0.53	0.01 0.06 0.78 0.04 0.05 1.33
610 611 612 613 614 615 616 617 618	Evergreen PalmWallichia densifloraCalamus acanthospathusCaryota urensCythea spinusaPlectocomia himalayanaCalamus latifoliusCycas pectinataPhoenix rupicolaCythea spinosaArenga westerhoutii	Arecaceae(Palmae) Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Arecaceae(Palmae) Arecaceae(Palmae) Cycadaceae Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Gramineae Arecaceae(Palmae)	0.59 0.03	5.80	0.53	0.01 0.06 0.78 0.04 0.05 1.33 0.83
610 611 612 613 614 615 616 617 618 619	Evergreen PalmWallichia densifloraCalamus acanthospathusCaryota urensCythea spinusaPlectocomia himalayanaCalamus latifoliusCycas pectinataPhoenix rupicolaCythea spinosaArenga westerhoutiiMusa griersonii	Arecaceae(Palmae) Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Arecaceae(Palmae) Arecaceae(Palmae) Cycadaceae Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Gramineae Arecaceae(Palmae)	0.59 0.03	5.80	0.53	0.01 0.06 0.78 0.04 0.05 1.33 0.83 0.80
610 611 612 613 614 615 616 617 618 619 620	Evergreen PalmWallichia densifloraCalamus acanthospathusCaryota urensCythea spinusaPlectocomia himalayanaCalamus latifoliusCycas pectinataPhoenix rupicolaCythea spinosaArenga westerhoutiiMusa griersoniiMusa thomsonii	Arecaceae(Palmae) Arecaceae(Palmae) Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Arecaceae(Palmae) Cycadaceae Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Gramineae Arecaceae(Palmae) Gramineae Musaceae Musaceae	0.59 0.03	5.80	0.53	0.01 0.06 0.78 0.04 0.05 1.33 0.83 0.80 0.36
610 611 612 613 614 615 616 617 618 619 620 621	Evergreen PalmWallichia densifloraCalamus acanthospathusCaryota urensCythea spinusaPlectocomia himalayanaCalamus latifoliusCycas pectinataPhoenix rupicolaCythea spinosaArenga westerhoutiiMusa griersoniiMusa thomsoniiPandanus unguifer	Arecaceae(Palmae)Arecaceae(Palmae)GramineaeArecaceae(Palmae)Arecaceae(Palmae)CycadaceaeArecaceae(Palmae)GramineaeArecaceae(Palmae)GramineaeArecaceae(Palmae)MusaceaeMusaceaePandanaceae	0.59 0.03	5.80	0.53	0.01 0.06 0.78 0.04 0.05 1.33 0.83 0.83 0.80 0.36 0.07

625	Phoenix aurea	Arecaceae(Palmae)				
626	Phoenix loureiri	Arecaceae(Palmae)				
627	Wallichia disticha	Arecaceae(Palmae)				
	Sub-total		0.64	5.96	27.60	4.36
	Grassess & Bamboos					
628	Chimonobambusa callosa	Gramineae	2.35	3.36	8.71	0.01
629	Thysanolaena latifolia	Gramineae	0.02		0.02	0.26
630	Drepanostachyum annulatum	Gramineae	0.01		0.01	
631	Yushania maling	Gramineae		0.04	0.09	
632	Arundinaria racemosa	Gramineae			1.57	
633	Arundo donax	Gramineae			0.02	
634	Dendrocalamus hamiltonii	Gramineae				0.48
635	Pseudostachyum polymorphum	Gramineae				0.03
636	Borinda grossa	Gramineae				
637	Arundinella hookeri	Gramineae				
638	Brachypodium sylvaticum	Gramineae				
639	Danthonia cumminsii	Gramineae				
640	Drepanostachyum khasiaum	Gramineae				
641	Eragrostis nigra	Gramineae				
642	Eragrostis tenella	Gramineae				
643	Festuca wallichiana	Gramineae				
644	Imperata cylindrica	Gramineae				
645	Muhlenbergia huegelii	Gramineae				
646	Poa annua	Gramineae				
647	Saccharum spontaneum	Gramineae				
	Sub-total		2.39	3.40	10.42	0.78
	Herbs					
	Perennial Herb		RD%	RD%	RD%	RD%
648	Potentilla peduncularis	Rosaceae	126.06			115.84
649	Pilea approximata	Urticaceae	60.45			
650	Ainsliaea latifolia	Compositae	59.09			52.82
651	Diplazium esculentum	Diapensiaceae	57.31		11.57	3.59
652	Cautleya spicata	Zingiberaceae	56.04			
653	Amomum subulatum	Zingiberaceae	55.03			
654	Elatostema heteroloba	Urticaceae	51.87			
655	Juncus brachystigma	Juncaceae	50.55			
656	Elatostema platyphyllum	Urticaceae	49.18	6.19		8.45
657	Asplenium nidus	Malpighiaceae	43.66			
658	Achyrospermum wallichianum	Labiatae	39.10	49.23		84.93
659	Elatostema hookerianum	Urticaceae	37.50	37.19		
660	Bistorta vacciniifolia	Polygonaceae	34.02			
661	Strobilanthes jennyae	Acanthaceae	32.78			43.40

662	Tupistra nutans	Convallariaceae	32.60		2.16	
663	Hedychium spicatum	Zingiberaceae	23.12		16.12	95.04
664	Cautleya gracilis	Zingiberaceae	22.03		4.14	0.72
665	Streptolirion volubile	Commelinaceae	19.33		0.71	
666	Juncus thomsonii	Juncaceae	19.10			17.91
667	Hemiphragma heterophyllum	Scrophulariaceae	18.16			7.78
668	Carex nubigena	Cyperaceae	17.73			
669	Isodon lophanthoides	Labiatae	14.81			
670	Elatostema monandrum	Urticaceae	13.40	4.55		
671	Acanthocalyx nepalensis	Morinaceae	13.08			
672	Aconitum bulbilliferum	Ranunculaceae	12.00			
673	Selaginella bisulcata	Crassulaceae	11.90	152.34		68.70
674	Elatostema nasutum	Urticaceae	11.65		3.79	5.05
675	Begonia hatacoa	Begoniaceae	11.57			
676	Carex atrofusca	Cyperaceae	11.56			25.27
677	Rubus calycinus	Rosaceae	10.08			2.48
678	Arisaema flavum	Araceae	9.86			
679	Arisaema consanguineum	Araceae	9.55			
680	Elatostema obtusum	Urticaceae	9.03			0.57
681	Oxalis griffithii	Oxalidaceae	8.79			1.41
682	Ranunculus diffusus	Ranunculaceae	8.11		1.12	
683	Alocasia fallax	Araceae	8.03		0.85	
684	Valeriana jatamansi	Valerianaceae	7.47			
685	Bistorta griffithii	Polygonaceae	7.05			
686	Urtica parviflora	Urticaceae	6.92	51.82		
687	Pteridium aquilinum	Rubiaceae	6.87			
688	Juncus sphacelatus	Juncaceae	6.76			
689	Persicaria runcinata	Polygonaceae	6.35			
690	Juncus benghalensis	Juncaceae	6.28			
691	Lloydia flavonutans	Liliaceae	6.05			
692	Paris polyphylla	Trilliaceae	5.75			2.84
693	Arisaema nepenthoides	Araceae	5.30			
694	Strobilanthes tamburensis	Acanthaceae	5.30			
695	Lysionotus serratus	Gesneriaceae	5.14			
696	Petasites tricholobus	Compositae	4.99			
697	Commelina maculata	Commelinaceae	4.86			0.30
698	Bistorta perpusilla	Polygonaceae	4.76			
699	Arisaema tortuosum	Araceae	4.42			
700	Elatostema sessile	Urticaceae	4.28		3.83	4.55
701	Bistorta amplexicaulis	Polygonaceae	4.06			3.89
702	Juncus himalensis	Juncaceae	4.03			4.45
703	Strobilanthes lamiifolia	Acanthaceae	3.79		26.18	
704	Pilea insilens	Urticaceae	3.31			

705	Viola bulbosa	Violaceae	2 1 1			
705			3.11			
706	Viola diffusa	Violaceae	3.09			
707	Fritillaria cirrhosa	Liliaceae	2.92			
708	Ranunculus pulchellus	Ranunculaceae	2.84			
709	Mimulus nepalensis	Scrophulariaceae	2.82			
710	Bergenia purpurascens	Saxifragaceae	2.73			
711	Leibnitzia nepalensis	Compositae	2.61			
712	Plantago erosa	Plantaginaceae	2.45			
713	Caltha scaposa	Ranunculaceae	2.43			
714	Peperomia tetraphylla	Piperaceae	2.38			
715	Fragaria nubicola	Rosaceae	2.38			11.10
716	Bistorta macrophylla	Polygonaceae	2.32			
717	Strobilanthes lachenensis	Acanthaceae	2.28			
718	Clintonia udensis	Uvulariaceae	2.18			1.30
719	Polygonatum singalilense	Convallariaceae	1.96			
720	Procris crenata	Urticaceae	1.80			
721	Commelina paludosa	Commelinaceae	1.72		37.58	
722	Pilea clarkei	Urticaceae	1.72		0.43	
723	Arisaema speciosum	Araceae	1.70		2.98	
724	Hemidesmus indicus	Hemerocallidaceae	1.53			
725	Astilbe rivularis	Saxifragaceae	1.50			
726	Pouzolzia hirta	Urticaceae	1.37	9.29		
727	Allium rhabdotum	Alliaceae	1.36			
728	Elatostema subincisum	Urticaceae	1.19			
729	Euphorbia stracheyi	Euphorbiaceae	1.00			
730	Ophiopogon decanoides	Convallariaceae	0.99			
731	Geum elatum	Rosaceae	0.94			1.56
732	Persicaria nepalensis	Polygonaceae	0.86			
733	Ophiorrhiza rosea	Rubiaceae	0.85			
734	Hedychium aurantiacum	Zingiberaceae	0.78			
735	Viola biflora	Violaceae	0.76			2.41
736	Pedicularis rhinanthoides	Scrophulariaceae	0.76			
737	Begonia josephii	Begoniaceae	0.72	24.79		
738	Pyrola corbieri	Pyrolaceae	0.64			
739	Senecio scandens	Compositae	0.63			5.01
740	Caltha palustris	Ranunculaceae	0.60			0.96
741	Carex duthiei	Cyperaceae	0.54			
742	Iris clarkei	Iridaceae	0.43			
743	Potentilla microphylla var. latiloba	Rosaceae	0.43			
744	Aletris gracilis	Melanthiaceae	0.43			
745	Pilea bracteosa	Urticaceae	0.42			
746	Begonia gemmipara	Begoniaceae	0.32			
🗸						

748	Roscoea alpina	Zingiberaceae	0.31			0.57
749	Anemone demissa	Ranunculaceae	0.16			
750	Pinguicula alpina	Lentibulariaceae	0.05	184.76		27.13
751	Aconitum ferox	Ranunculaceae		102.63		
752	Allium wallichii	Alliaceae		28.47	43.50	
753	Anemone rivularis	Ranunculaceae		22.24	5.28	77.33
754	Arisaema elephas	Araceae		15.80		
755	Arisaema galeatum	Araceae		15.46		
756	Artemisia tukuchaensis	Compositae		14.29		11.85
757	Asplenium yoshinegae	Malpighiaceae		7.44		
758	Aster diplostephioides	Compositae		7.07	17.89	2.20
759	Begonia annulata	Begoniaceae		4.82		
760	Begonia cathcartii	Begoniaceae		4.02		6.43
761	Begonia megaptera	Begoniaceae		3.26		
762	Begonia palmata	Begoniaceae		3.13		
763	Cardiocrinum giganteum	Liliaceae		0.46		
764	Carex atrata	Cyperaceae	27.83			9.25
765	Carex alopecuroides	Cyperaceae		0.36		
766	Carex alopecuroides	Cyperaceae		0.25	95.64	
767	Carex baccans	Cyperaceae			89.89	
768	Carex breviculmis	Cyperaceae			83.45	1.35
769	Carex condensata	Cyperaceae			65.97	
770	Carex decora	Cyperaceae			52.56	
	Chromolaena odoratum	Compositae			42.30	
771	Dipteris conjugata	Dipsacaceae			2.60	
772	Elatostema dissectum	Urticaceae			2.02	
773	Elatostema imbricans	Urticaceae			1.99	
774	Elatostema rupestre	Urticaceae			1.92	
775	Euphorbia griffithii	Euphorbiaceae			1.54	
776	Gerbera maxima	Compositae			0.84	
777	Hedychium ellipticum	Zingiberaceae			0.43	
778	Pilea umbrosa	Urticaceae				126.95
779	Selaginella monospora	Crassulaceae				87.54
780	Nephrolepis cordifolia	Sapindaceae				60.81
	Pilea hookeriana	Urticaceae				37.80
781	Kobresia woodii	Cyperaceae				35.90
782	Theropogon pallidus	Convallariaceae				30.28
783	Pyrossia sp	Pyrolaceae				25.07
784	Pilea racemosa	Urticaceae				18.90
785	Persicaria microcephala	Polygonaceae				16.74
786	Oxalis leucolepis	Oxalidaceae				15.81
787	Rumex nepalensis	Polygonaceae				13.67
788	Parasenecio quinquelobus	Compositae				12.48

789	Maianthemum purpureum	Convallariaceae		11.51
790	Ligularia fischeri	Compositae		11.42
791	Ophiopogon clarkei	Convallariaceae		10.51
792	Persicaria capitata	Polygonaceae		10.38
793	Ligularia mortonii	Compositae		9.29
794	Pedicularis siphonantha	Scrophulariaceae		8.08
795	Lindenbergia grandiflora	Scrophulariaceae		7.10
796	Lloydia longiscapa	Liliaceae		6.05
797	Polygonatum hookeri	Convallariaceae		5.03
798	Juncus duthiei	Juncaceae		4.67
799	Rungia himalayensis	Acanthaceae		4.60
800	Molineria crassifolia	Hypoxidaceae		4.04
801	Selaginella imbracta	Crassulaceae		3.93
802	Potentilla supina	Rosaceae		2.59
803	Lycopodium spp	Solanaceae		2.37
804	Phrynium placentarium	Marantaceae		2.20
805	Persicaria dolichopoda	Polygonaceae		2.13
806	Tacca integrifolia	Taccaceae		2.10
807	Pteridium aquilinum	Rubiaceae		2.05
808	Streptopus simplex	Uvulariaceae		1.91
809	Pilea symmeria	Urticaceae		1.89
810	Pteris dactylina	Rubiaceae		1.58
811	Rubus pectinaroides	Rosaceae		1.07
812	Selaginella fimbrata	Crassulaceae		0.90
813	Viola betonicifolia	Violaceae		0.64
814	Viola pilosa	Violaceae		0.60
815	Strobilanthes hamiltoniana	Acanthaceae		0.60
816	Trifolium repens	Leguminosae		0.46
817	Maianthemum oleraceum	Convallariaceae		0.24
818	Ranunculus silerifolius	Ranunculaceae		0.18
819	Viola bhutanica	Violaceae		0.16
820	Arenaria edgeworthiana	Caryophyllaceae		
821	Arenaria ludlowii	Caryophyllaceae		
822	Artemisia bhutanica	Compositae		
823	Astragalus cytissoides	Leguminosae		
824	Bistorta vaccinifolia	Polygonaceae		
825	Cassiope fastigiata	Ericaceae		
826	Cassiope selaginoides	Ericaceae		
827	Costus speciosus	Costaceae		
828	Iris domestica	Iridaceae		
829	Potentilla peduncullaris	Rosaceae		
830	Salix lindleyana	Salicaceae		
831	Saxifraga saxorum	Saxifragaceae		

832	Treutlera insignis	Asclepiadaceae		
833	Aconogonon campanulatum	Polygonaceae		
834	Acorus calamus	Acoraceae		
835	Allium macranthum	Alliaceae		
836	Amaranthus spinosus	Amaranthaceae		
837	Amaranthus viridis	Amaranthaceae		
838	Anagallis arvensis	Primulaceae		
839	Anemone obtusiloba	Ranunculaceae		
840	Anemone rupestris	Ranunculaceae		
841	, Anisodus luridus	Solanaceae		
842	Arisaema concinnum	Araceae		
843	Arisaema griffithii	Araceae		
844	Artemisia austroyunnanensis	Compositae		
845	Asplenium gueinzianum	Malpighiaceae		
846	Asplenium macrophyllum	Malpighiaceae		
847	Asplinium macrophyllum	Malpighiaceae		
848	Aster albescens	Compositae		
849	Aster himalaicus	Compositae		
850	Aster neoelegans	Compositae		
851	Begonia ovatifolia	Begoniaceae		
852	Boenninghausenia abiflora	Urticaceae		
853	Bryocarpum himalaicum	Primulaceae		
854	Carlemannia griffithii	Carlemanniaceae		
855	Carpesium nepalense	Compositae		
856	Colocasia fallax	Araceae		
857	Corallodiscus bhutanicus	Gesneriaceae		
858	Curcuma aromatica	Zingiberaceae		
859	Cuscuta reflexa	Cuscutaceae		
860	Cyananthus lobatus	Campanulaceae		
861	Cyperus cyperoides	Cyperaceae		
862	Dipteris wallichiana	Dipsacaceae		
863	Doronicum roylei	Compositae		
864	Drynaria coronans	Caryophyllaceae		
865	Drynaria mollis	Caryophyllaceae		
866	Drynaria propinqua	Caryophyllaceae		
867	Dubyaea hispida	Compositae		
868	Duchesnea indica	Rosaceae		
869	Euphorbia hirta	Euphorbiaceae		
870	Euphorbia thymifolia	Euphorbiaceae		
871	Fragaria nubicola	Rosaceae		
872	Gentiana capitata	Gentianaceae		
873	Gentiana depressa	Gentianaceae		
874	Gentiana elwesii	Gentianaceae		

915	Thalictrum foliolosum	Ranunculaceae	17.31	2.17		
914	Lecanthus peduncularis	Urticaceae	50.51			
913	Thalictrum foetidum	Ranunculaceae	50.94			21.28
912	Ageratum conyzoides	Compositae	133.25			
	Annual Herb					
	Sub-total		1275.04	749.87	619.27	1310.64
911	Verbena officinalis	Verbenaceae				
910	Synotis wallichii	Compositae				
909	Scirpus ternatanus	Cyperaceae				
908	Saxifraga strigosa	Saxifragaceae				
907	Saussurea obvallata	Compositae				
906	Rubus fockeanus	Rosaceae				
905	Rheum australe	Polygonaceae				
904	Ranunculus brotherusi	Ranunculaceae				
903	Pteris wallichiana	Rubiaceae				
902	Potentilla griffithii	Rosaceae				
901	Potentilla cuneata	Rosaceae				
900	Polygonatum sibiricum	Convallariaceae				
899	Polygonatum cathcartii	Convallariaceae				
898	Pilea glaberrima	Urticaceae				
897	Pauzolzia hirta	Passifloraceae				
896	Panax pseudo ginseng	Ranunculaceae				
895	Oxygraphic polypetala	Oxalidaceae				
894	Ophiopogon bodinieri	Convolvulaceae				
893	Neopicrorhiza scrophulariiflora	Scrophulariaceae				
892	Mulgedium bracteatum	Compositae				
891	Mikania micrantha	Compositae				
890	Microssorium phyllomanes	Cruciferae				
889	Megacodon stylophorus	Gentianaceae				
888	Mazus surculosus	Scrophulariaceae				
887	Lygodium japonicum	Solanaceae				
886	Lycopodium clavatum	Solanaceae				
885	Llyodia tibetica	Liliaceae				
884	Lindenbergia indica	Scrophulariaceae				
883	Lepisorus Ioriformis	Sapindaceae				
882	Leontopodium jacotianum	Compositae				
881	Ixeridium beauverdianum	Compositae				
880	Hoya polyneura	Asclepiadaceae				
879	Houttuynia cordata	Saururaceae				
878	Hedychium thyrsiforme	Zingiberaceae				
876 877	Gentiana veitchiorum Gypsophylla cerastioides	Caryophyllaceae				
		Gentianaceae				

916	Meconopsis paniculata	Papaveraceae	12.73			
917	Rheum accuminatum	Polygonaceae	12.60			
918	Chamabainia cuspidata	Urticaceae	10.28			2.41
919	Blumea lanceolaria	Compositae	6.08			
920	Polygonum plebeium	Polygonaceae	5.46	7.74		
921	Halenia elliptica	Gentianaceae	4.70			4.08
922	Cirsium falconeri	Compositae	3.82			2.16
923	Geranium procurrens	Geraniaceae	3.64			
924	Anaphalis margaritacea	Compositae	3.48			
925	Swertia bimaculata	Gentianaceae	3.44			
926	Phytolacca acinosa	Phytolaccaceae	3.13			
927	Achyranthes bidentata	Amaranthaceae	2.63			
928	Shuteria involucrata	Leguminosae	2.58			
929	Primula calderiana	Primulaceae	2.56			
930	Primula primulina	Primulaceae	2.21			
931	Blumea lacera	Compositae	2.14			
932	Vincetoxicum hirundinaria	Asclepiadaceae	2.13		1.41	
933	Pycnoplinthopsis bhutanica	Cruciferae	2.04			
934	Meconopsis horidula	Papaveraceae	2.03			
935	Swertia pseudohookeri	Gentianaceae	2.03			
936	Meconopsis sinuata	Papaveraceae	2.02			
937	Impatiens arguta	Balsaminaceae	1.54			
938	Galium aparine	Rubiaceae	1.38			
939	Primula whitei	Primulaceae	1.31			
940	Senecio wallichii	Compositae	1.31			30.54
941	Galium elegans	Rubiaceae	1.29			
942	Anaphalis busua	Compositae	1.19			
943	Primula sikkimensis	Primulaceae	1.18			
944	Primula macrophylla	Primulaceae	1.15			
945	Rheum spiciforme	Polygonaceae	1.14			
946	Veronica persica	Scrophulariaceae	1.03			
947	Anaphalis xylorhiza	Compositae	1.01			
948	Primula strumosa	Primulaceae	1.01			
949	Spergula arvensis	Caryophyllaceae	0.94			
950	Impatiens puberula	Balsaminaceae	0.82			
951	Senecio laetus	Compositae	0.81			
952	Oxytropis lapponica	Leguminosae	0.81			
953	Primula elongata	Primulaceae	0.70			
954	Androsace strigillosa	Primulaceae	0.68			
955	Androsace geraniifolia	Primulaceae	0.68			
956	Silene nepalensis	Caryophyllaceae	0.65			
957	Primula denticulata	Primulaceae	0.54			10.31
958	Silene indica	Caryophyllaceae	0.51			

959	Pegaeophyton scapiflorum	Cruciferae	0.51			
960	Mandragora caulescens	Solanaceae	0.49			
961	Anaphalis contorta	Compositae	0.46			
962	Androsace hookeriana	Primulaceae	0.41			
963	Drosera peltata	Droseraceae	0.37			
964	Omphalogramma elwesiana	Primulaceae	0.37			
965	Primula atrodentata	Primulaceae	0.34			
966	Primula gracilipes	Primulaceae	0.33			
967	Geranium nakaoanum	Geraniaceae	0.31			
968	Oxyria digyna	Polygonaceae	0.30			
969	Arenaria densissima	Caryophyllaceae	0.25			
970	Monotropa uniflora	Monotropaceae	0.25			
971	Anaphalis nepalensis	Compositae	0.17			
972	Angelica cyclocarpa	Umbelliferae	0.16			
973	Achyranthes aspera	Amaranthaceae		106.08		1.95
974	Adiantum edgeworthii	Compositae		91.14		
975	Ainsliaea aptera	Compositae		49.54		
976	Anaphalis triplinervis	Compositae		26.03		
977	Arachniodes henryi	Leguminosae		20.79		
978	Asymbelenthus sikkimensis	Leguminosae		7.03		
979	Blumea aromatica	Compositae		2.84		
980	Bolbitis augustifolia	Nyctaginaceae		1.69		
981	Crassocephalum crepidioides	Compositae			19.39	
982	Desmodium laxum	Leguminosae			6.24	
983	Desmodium triflorum	Leguminosae			5.52	
984	Dicliptera bupleuroides	Acanthaceae			4.23	
985	Elsholtzia blanda	Labiatae			1.88	
986	Elsholtzia stachyodes	Labiatae			1.88	
987	Flemingia macrophylla	Leguminosae			1.11	
988	Galium megacyttarion	Rubiaceae			1.10	
989	Geranium lambertii	Geraniaceae			0.86	
990	Girardinia diversifolia	Urticaceae			0.76	
991	Gueldenstaedtia himalaica	Leguminosae			0.52	
992	Hydrocotyle himalaica	Umbelliferae			0.23	
993	Hydrocotyle nepalensis	Umbelliferae			0.21	
994	Hymenasplenium	Acanthaceae			0.15	
995	Impatiens balsamina	Balsaminaceae			0.12	
996	Impatiens discolor	Balsaminaceae			0.09	
997	Peliosanthes griffithii	Convallariaceae				64.60
998	Solanum torvum	Solanaceae				10.51
999	Silene gonosperma	Caryophyllaceae				7.83
1000	Rubus fragarioides	Rosaceae				7.59
1001	Indigofera trifoliata	Leguminosae				4.02

1002	Ligusticum acuminatum	Umbelliferae		1.93
1003	Urtica ardens	Urticaceae		0.55
1004	Thalictrum javanicum	Ranunculaceae		0.36
1005	Thalictrum punduanum	Ranunculaceae		0.19
1006	Impatiens racemosa	Balsaminaceae		0.80
1007	Impatiens urticifolia	Balsaminaceae		0.66
1008	Boenninghausenia albiflora	Rutaceae		
1009	Centella asiatica	Umbelliferae		
1010	Girardinia palmata	Urticaceae		
1011	Pleurospermum hookeri	Umbelliferae		
1012	Saussurea gossypiphora	Compositae		
1013	Sida acuta	Malvaceae		
1014	Sida rhombifolia	Malvaceae		
1015	Triumfetta annua	Tiliaceae		
1016	Triumfetta rhomboidea	Tiliaceae		
1017	Urena lobata	Malvaceae		
1018	Acmella uliginosa	Compositae		
1019	Acronema hookeri	Umbelliferae		
1020	Agelica sikkimensis	Agavaceae		
1021	Agrimonia pilosa	Rosaceae		
1022	Alectra avensis	Magnoliaceae		
1023	Aletris pauciflora	Melanthiaceae		
1024	Bidens pilosa	Compositae		
1025	Bistorta vivipara	Polygonaceae		
1026	Brassica juncea	Cruciferae		
1027	Bupleurum dalhousieanum	Umbelliferae		
1028	Campanula pallida	Campanulaceae		
1029	Capsella bursa-pastroris	Cruciferae		
1030	Cardamine macrophylla	Cruciferae		
1031	Chenopodium album	Chenopodiaceae		
1032	Chirita bifolia	Gesneriaceae		
1033	Chirita oblongifolia	Gesneriaceae		
1034	Chirita pumila	Gesneriaceae		
1035	Clinopodium umbrosum	Labiatae		
1036	Conyza floribunda	Compositae		
1037	Cortia drepressa	Umbelliferae		
1038	Corydalis ecristata	Fumariaceae		
1039	Crassocephalum crepidoides	Compositae		
1040	Cyanotis vaga	Commelinaceae		
1041	Cynoglossum furcatum	Boraginaceae		
1042	Dichrocephala integrifolia	Compositae		
1043	Disporum cantoniense	Uvulariaceae		
1044	Draba elata	Cruciferae		

1045	Galinsoga parviflora	Compositae		
1046	Galium aparene	Compositae		
1040	Galium sikkimense	Rubiaceae		
1048	Geranium donianum	Geraniaceae		
1049	Geranium nepalense	Geraniaceae		
1019	Gerenium nepalense	Compositae		
1050	Impatience spirifer	Illiciaceae		
1051	Impatiens cristata	Balsaminaceae		
1052	Impatiens exilis	Balsaminaceae		
1055	Impatiens florigera	Balsaminaceae		
1054	Impatiens radiata	Balsaminaceae		
1055	Leucas ciliata	Labiatae		
1050	Lobelia pyramidalis	Liliaceae		
1057	Lobelia nummularia	Campanulaceae		
1058	Lysimachia japonica	Primulaceae		
	Lysimachia lobelioides	Primulaceae		
1060 1061	Maianthemum fuscum	Convallariaceae		
1061	Mellisa axillaris	Labiatae		
1062	Mianthemum oleraceum	Rubiaceae		
1063	Myosotis alpestris			
		Boraginaceae Rubiaceae		
1065	Ophiorrhiza fasciculata Oxalis corniculata	Oxalidaceae		
1066 1067				
1067	Parthenium hysterophorus Picris hieracioides	Compositae		
		Compositae		
1069	Polygonum chinense Primula bellidifolia	Polygonaceae Primulaceae		
1070				
1071	Primula bracteosa	Primulaceae		
	Primula chasmophila	Primulaceae		
1073	Primula glabra	Primulaceae		
1074	Primula listeri	Primulaceae		
1075	Primula obliqua	Primulaceae		
1076	Prunella vulgaris	Labiatae		
1077	Pseudognaphalium affine	Compositae		
1078	Rungia pectinata	Acanthaceae		
1079	Sanicula elata	Umbelliferae		
1080	Scoparia dulcis	Scrophulariaceae		
1081	Scutellaria discolor	Labiatae		
1082	Senoeio raphanifolius	Compositae		
1083	Siegesbeckia orientalis	Malvaceae		
1084	Solanum americanum	Solanaceae		
1085	Sphaeranthus indicus	Compositae		
1086	Spongiocarpella purpurea	Leguminosae		
1087	Stachys melissaefolia	Labiatae		

CONSERVATION MANAGEMENT PLAN OF JSWNP (2022-2031)

1088	Stellaria vestita	Caryophyllaceae				
1089	Swertia wardii	Gentianaceae				
1090	Tabacum nicotianum	Myrtaceae				
1090	Thalictrum chelidonii	Ranunculaceae				
1092	Thalictrum rostellatum	Ranunculaceae				
1092	Tiarella polyphylla	Saxifragaceae				
1094	Tongoloa loloensis	Umbelliferae				
1095	Tricyrtis maculata	Uvulariaceae				
1096	Uticularia striatula	Urticaceae				
1097	Verbascum thapsus	Scrophulariaceae				
1098	Viola canescens	Violaceae				
1099	Youngia japonica	Compositae				
	Sub-total		370.10	315.06	45.70	171.77
	Grasses & Bamboos					
1100	Polystichum squarrosum	Gramineae	69.01			
1101	Oplismenus compositus	Gramineae	34.71	123.90	52.94	68.70
	Yushania maling	Gramineae	27.90			
1102	Ophiopogon wallichianus	Convallariaceae	22.37		3.87	
1103	Digitaria cruciata	Gramineae	5.32			0.42
1104	Digitaria ciliaris	Gramineae	3.22	8.06		
	Chimonobambusa callosa	Gramineae			48.16	3.39
1105	Cymbopogon flexuosus	Gramineae			17.07	
1106	Cyrtococcum patens	Gramineae			8.59	
1107	Digitaria abludens	Gramineae			4.14	
1108	Drepanostachyum intermedium	Gramineae			2.53	
1109	Dynaria cordata	Gramineae			2.32	13.75
1110	Dynaria quercifolia	Gramineae			2.31	0.39
1111	Yushania microphylla	Gramineae				52.54
1112	Oplismenus undulatifolius	Gramineae				11.52
1113	Oplismenus compositus var. rariflorus	Gramineae				8.80
	Thysanolaena latifolia	Gramineae				6.91
1114	Oplismenus burmannii	Gramineae				2.78
	Sub-total		162.53	131.96	141.93	169.20
	Orchid					
1115	Phaius mishmensis	Orchidaceae	48.97		3.02	
1116	Calanthe biloba	Orchidaceae	18.34		0.86	
1117	Cypripedium cordigerum	Orchidaceae	3.13			
1118	Goodyera viridiflora	Orchidaceae	2.84			
1119	Calanthe plantaginea	Orchidaceae	1.88		1.52	
1120	Calanthe alismifolia	Orchidaceae	1.33	1.41		3.35
1121	Cheirostylis moniliformis	Orchidaceae	0.86			
1122	Calanthe sylvatica	Orchidaceae		1.49		

1123	Calanthe triplicata	Orchidaceae		1.34		60.70
1124	Cypripedium guttatum	Orchidaceae			13.90	
1125	Cypripedium himalaicum	Orchidaceae			8.67	
1126	Goodyera hemsleyana	Orchidaceae			0.74	
1127	Goodyera procera	Orchidaceae			0.70	
1128	Goodyera vittata	Orchidaceae			0.67	
1129	Odontochilus crispus	Orchidaceae				8.17
1130	Paphiopedilum fairrieanum	Orchidaceae				6.05
1131	Phaius flavus	Orchidaceae				3.23
1132	Aorchis spathulata	Orchidaceae				
1133	Calanthae brevicornu	Orchidaceae				
	Sub-total		77.36	4.24	30.07	81.50
	Climbers					
	Piper longum	Piperaceae	80.26			
1134	Monachosorum henryii	Cucurbitaceae	61.81			
	Piper mullesua	Piperaceae	17.36		24.70	
1135	Crawfurdia speciosa	Gentianaceae	16.27			
	Smilax ferox	Smilacaceae	13.70			
1136	Cynanchum auriculatum	Asclepiadaceae	13.09			
	Hedera nepalensis	Araliaceae	10.65			2.93
	, Rubia manjith	Rubiaceae	5.05	1.13		
	Rhaphidophora hookeri	Araceae	4.01			
1137	Holboellia latifolia	Lardizabalaceae	3.93			
1138	Crawfurdia campanulacea	Gentianaceae	3.44			
	Tetrastigma serrulatum	Vitaceae	2.31			37.27
	Clematis acutangula	Ranunculaceae	1.28			
1139	Parthenocissus semicordata	Vitaceae	1.28			
1140	Rubia sikkimensis	Rubiaceae	1.12			
1141	Piper chuvya	Piperaceae	1.12		4.98	
	Cyclea bicristata	Menispermaceae	0.86			
1142	Cissampelopsis corifolia	Compositae	0.82		0.96	
	Rubia wallichiana	Rubiaceae	0.79			
1143	Solena amplexicaulis	Cucurbitaceae	0.67			
1144	Rhaphidophora calophylla	Araceae	0.42	0.98		3.49
	Jasminum dispermum	Oleaceae	0.11			31.37
1145	Ariopsis peltata	Convolvulaceae		17.28	0.94	
1146	Asparagus filicinus	Asparagaceae		13.09		
1147	Asparagus racemosus	Asparagaceae		8.92		
	Chonemorpha fragrans	Apocynaceae			46.95	
	Clematis acuminata	Ranunculaceae			32.82	
	Clematis buchananiana	Ranunculaceae			30.34	
1148	Clematis puberula	Ranunculaceae			21.29	
1149	Dioscorea kamoonensis	Dioscoreaceae			3.73	

Diagona anagari	Discourse			2.02	
					0.62
					0.63
,				0.40	
					53.13
-	-				45.26
					36.86
Tetrastigma leucostaphylum	Vitaceae				24.12
Tetrastigma objectum	Vitaceae				17.27
Mossaenda treutleri	Rubiaceae				15.90
Rhaphidophora glauca	Araceae				10.38
Pothos cathcartii	Araceae				7.41
Piper suipigua	Piperaceae				3.88
Tetrastigma rumicispermum	Vitaceae				2.85
Tetrastigma corymbosum	Vitaceae				2.59
Manachosorum henryi	Malvaceae				2.18
Piper peepuloides	Piperaceae				1.89
Rhaphidophora decursiva	Araceae				1.82
Toxocarpus himalensis	Asclepiadaceae				0.96
Smilax aspera	Smilacaceae				0.85
Lonicera macrantha	Caprifoliaceae				0.50
Jasminum elongatum	Oleaceae				0.27
Tetrastigma bracteolatum	Vitaceae				0.07
Smilax elegans	Smilacaceae				0.05
Sub-total		240.34	41.41	171.99	303.90
Evergreen Shrub					
Chloranthus elatior	Chloranthaceae	167.67	14.06	17.88	82.12
Rhododendron setosum	Ericaceae	123.85			
Rhododendron lepidotum	Ericaceae	50.87			
Osyris lanceolata	Santalaceae	30.82			
Strobilanthes himalayana	Acanthaceae	25.78		24.67	15.90
Strobilanthes himalayana Cassiope fastigata	Acanthaceae Ericaceae	25.78 14.70		24.67	15.90
				24.67	15.90 23.03
Cassiope fastigata	Ericaceae	14.70		24.67	
Cassiope fastigata Vaccinium nummularia	Ericaceae Ericaceae	14.70 12.09	1.49	24.67	
Cassiope fastigata Vaccinium nummularia Agapetes serpens	Ericaceae Ericaceae Ericaceae	14.70 12.09 10.00	1.49		23.03
Cassiope fastigata Vaccinium nummularia Agapetes serpens Smilax myrtillus	Ericaceae Ericaceae Ericaceae Smilacaceae	14.70 12.09 10.00 9.60	1.49		23.03
Cassiope fastigata Vaccinium nummularia Agapetes serpens Smilax myrtillus Strobilanthes divaricata Elatostema lineolatum	Ericaceae Ericaceae Ericaceae Smilacaceae Acanthaceae	14.70 12.09 10.00 9.60 9.06		2.94	23.03
Cassiope fastigata Vaccinium nummularia Agapetes serpens Smilax myrtillus Strobilanthes divaricata Elatostema lineolatum Rhododendron anthopogon	Ericaceae Ericaceae Ericaceae Smilacaceae Acanthaceae Urticaceae Ericaceae	14.70 12.09 10.00 9.60 9.06 4.34 4.04		2.94	23.03
Cassiope fastigata Vaccinium nummularia Agapetes serpens Smilax myrtillus Strobilanthes divaricata Elatostema lineolatum Rhododendron anthopogon Pilea scripta	EricaceaeEricaceaeEricaceaeSmilacaceaeAcanthaceaeUrticaceaeEricaceaeUrticaceae	14.70 12.09 10.00 9.60 9.06 4.34 4.04 3.53		2.94	23.03 73.09
Cassiope fastigata Vaccinium nummularia Agapetes serpens Smilax myrtillus Strobilanthes divaricata Elatostema lineolatum Rhododendron anthopogon Pilea scripta Dischidia benghalensis	 Ericaceae Ericaceae Ericaceae Smilacaceae Acanthaceae Urticaceae Ericaceae Urticaceae Asclepiadaceae 	14.70 12.09 10.00 9.60 9.06 4.34 4.04 3.53 3.17		2.94	23.03 73.09
Cassiope fastigata Vaccinium nummularia Agapetes serpens Smilax myrtillus Strobilanthes divaricata Elatostema lineolatum Rhododendron anthopogon Pilea scripta	EricaceaeEricaceaeEricaceaeSmilacaceaeAcanthaceaeUrticaceaeEricaceaeUrticaceae	14.70 12.09 10.00 9.60 9.06 4.34 4.04 3.53		2.94	23.03 73.09
	Mossaenda treutleriRhaphidophora glaucaPothos cathcartiiPiper suipiguaTetrastigma rumicispermumTetrastigma corymbosumManachosorum henryiPiper peepuloidesRhaphidophora decursivaToxocarpus himalensisSmilax asperaLonicera macranthaJasminum elongatumTetrastigma bracteolatumSmilax elegansSub-totalEvergreen ShrubChloranthus elatiorRhododendron setosum	Ficus pubigeraMoraceaeGouania leptostachyaRhamnaceaeHedyotis scandensRubiaceaeSmilax perfoliataSmilacaceaeLonicera angustifoliaCaprifoliaceaeToxocarpus aurantiacusAsclepiadaceaeTetrastigma leucostaphylumVitaceaeMossaenda treutleriRubiaceaeRhaphidophora glaucaAraceaePothos cathcartiiAraceaePiper suipiguaPiperaceaeTetrastigma corymbosumVitaceaeManachosorum henryiMalvaceaePiper peepuloidesPiperaceaeSmilax asperaSmilacaceaeSmilax asperaSmilacaceaeSub-totalCaprifoliaceaeRhododendron setosumChloranthaceaeRhododendron lepidotumEricaceaeRhododendron lepidotumEricaceae	Ficus pubigeraMoraceaeGouania leptostachyaRhamnaceaeHedyotis scandensRubiaceaeSmilax perfoliataSmilacaceaeLonicera angustifoliaCaprifoliaceaeToxocarpus aurantiacusAsclepiadaceaeTetrastigma leucostaphylumVitaceaeVitaceaeImage and treutleriRubiaceaeImage and treutleriRubiaceaeImage and treutleriRubiaceaeImage and treutleriRubiaceaeImage and treutleriRubiaceaeImage and treutleriPothos cathcartiiAraceaePiper suipiguaPiperaceaeTetrastigma corymbosumVitaceaeManachosorum henryiMalvaceaePiper peepuloidesPiperaceaeSmilax asperaSmilacaceaeSmilax asperaSmilacaceaeJasminum elongatumOleaceaeTetrastigma bracteolatumVitaceaeSmilax elegansSmilacaceaeSub-totalImage and treutleriKhododendron lepidotumEricaceaeShododendron lepidotumStraceaeShododendron lepidotumStraceaeRhododendron lepidotumStraceaeSonareStraceaeShododendron lepidotumStraceaeSonareStraceaeSonareStraceaeSonareStraceaeStratage and treuteStratage and treuteSt	Ficus pubigeraMoraceaeIGouania leptostachyaRhamnaceaeIGouania leptostachyaRhamnaceaeIHedyotis scandensRubiaceaeISmilax perfoliataSmilacaceaeILonicera angustifoliaCaprifoliaceaeIToxocarpus aurantiacusAsclepiadaceaeITetrastigma leucostaphylumVitaceaeIVitaceaeIIRhaphidophora glaucaAraceaeIPothos cathcartiiAraceaeIPiper suipiguaPiperaceaeITetrastigma corymbosumVitaceaeIManachosorum henryiMalvaceaeIPiper peepuloidesPiperaceaeISmilax asperaSmilacaceaeILonicera macranthaCaprifoliaceaeIJasminum elongatumOleaceaeIVitaceaeIISmilacaceaeIISmilacaceaeIISmilax asperaSmilacaceaeIJasminum elongatumOleaceaeISub-totalZ40.3441.41Evergreen ShrubIIChloranthas elatiorChloranthaceaeIRiododendron lepidotumEricaceaeIRhododendron lepidotumEricaceaeISub-totalEricaceaeIRhododendron lepidotumEricaceaeISub-totalEricaceaeISub-totalEricaceaeISub-totalISub-totalI	Ficus pubigeraMoraceaeI.28Gouania leptostachyaRhamnaceaeI.28Hedyotis scandensRubiaceaeI.0Smilax perfoliataSmilacaceaeI.0Lonicera angustifoliaCaprifoliaceaeI.0Toxocarpus aurantiacusAsclepiadaceaeI.0Tetrastigma leucostaphylumVitaceaeI.0VitaceaeI.0I.0Mossaenda treutleriRubiaceaeI.0Rhaphidophora glaucaAraceaeI.0Pothos cathcartiiAraceaeI.0Piper suipiguaPiperaceaeI.0Tetrastigma nunicispermumVitaceaeI.0VitaceaeI.0I.0Manachosorum henryiMalvaceaeI.0Piper peepuloidesPiperaceaeI.0SmilaceaeI.0I.0SmilaceaeI.0I.0SmilaceaeI.0I.0Manachosorum henryiMalvaceaeI.0NitaceaeI.0I.0Smilax asperaSnilaceaeI.0Lonicera macranthaCaprifoliaceaeI.0Jasminum elongatumOleaceaeI.0I.0Smilax elegansSmilaceaeI.0I.0Smilax elegansSmilaceaeI.0I.0Shododendron setosumFricaceaeI.0.I.0Shododendron lepidotumFricaceaeI.0.I.0.Shododendron lepidotumFricaceaeI.0.I.0.Shododendron lepidotumFricaceaeI.0.I.0.Shododendron lepidot

	Ardisia macrocarpa	Myrsinaceae		19.19		
1174	Athyrium foliolosum	Acanthaceae		6.62		
	Baliospermum densiflorum	Euphorbiaceae		6.03		
1175	Barleia strigosa	Acanthaceae		5.22		
1176	Barleria cristata	Acanthaceae		4.84		16.13
	Boehmeria macrophylla	Urticaceae		2.00		
1177	Boehmeria penduliflora	Urticaceae		1.73		
1178	Jasminum officinale	Oleaceae				24.42
	Piper pedicellatum	Piperaceae				21.03
	Sarcococca wallichii	Buxaceae				4.82
1179	Strobilanthes echinata	Acanthaceae				3.91
1180	Strobilanthes inflata	Acanthaceae				2.85
1181	Strobilanthes frondosa	Acanthaceae				1.99
1182	Rauvolfia serpentina	Apocynaceae				1.08
1183	Rhododendron edgeworthii	Ericaceae				0.71
	Strobilanthes capiata	Acanthaceae				0.26
	Vernonia volkameriifolia	Compositae				0.12
	Sub-total		474.83	122.43	45.53	280.35
	Deciduous Shrub					
	Aconogonon molle	Polygonaceae	43.51			
	Daphne bholua	Thymelaeaceae	22.70			
1184	Rhodiola himalensis	Crassulaceae	7.57			4.31
1185	Spiraea arcuata	Rosaceae	5.07			
1186	Artemisia parviflora	Compositae	3.40			
1187	Rhodiola humilis	Crassulaceae	3.04			
1188	Rhodiola crenulata	Crassulaceae	2.43			
1189	Rhodiola cretinii	Crassulaceae	1.52			
	Hypericum choisianum	Hypericaceae	1.15			
1190	Hoya lanceolata	Asclepiadaceae	0.69			
1191	Duhaldea cappa	Compositae	0.68			0.32
1192	Aeschynanthus parviflorus	Gesneriaceae		90.04		
1193	Aeschynanthus sikkimensis	Gesneriaceae		80.49		
	Daphne involucrata	Thymelaeaceae			8.46	
	Desmodium elegans	Leguminosae			6.34	
1194	Diacalpe aspidoides	Philadelphaceae			5.29	
	Dichroa febrifuga	Hydrangeaceae			4.46	
	Mackaya indica	Acanthaceae				49.77
	Oxyspora paniculata	Melastomataceae				32.33
1195	Reinwarntia indica	Linaceae				21.99
	Psilanthus bengalensis	Rubiaceae				21.19
	Rubus pentagonus	Rosaceae				16.84
1196	Rhynchotechum ellipticum	Gesneriaceae				14.33
1197	Rubus biflorus	Rosaceae				12.66

1198	Reinwardtia indica	Linaceae				0.79
1199	Tectaria polymorpha	Bignoniaceae				0.33
1200	Pogostemon benghalensis	Labiatae				0.08
	Sub-total		91.76	170.53	24.54	174.94
	Evergreen Palm					
	Calamus acanthospathus	Arecaceae(Palmae)		1.54		
	Cycas pectinata	Cycadaceae			18.80	
	Plectocomia himalayana	Arecaceae(Palmae)				8.51
	Wallichia densiflora	Arecaceae(Palmae)				0.56
	Pandanus unguifer	Pandanaceae				0.08
	Sub-total			1.54	18.80	9.15
	Epiphytic Orchids					
			RD%	RD%	RD%	RD%
	Arethuseae					
1201	Coelogyne barbata	Orchidaceae			7.25	0.88
1202	Coelogyne cristata	Orchidaceae	16.85	21.62	2.17	7.79
1203	Coelogyne fimbriata	Orchidaceae	1.53			0.18
1204	Coelogyne fuscescens var. fuscescens	Orchidaceae	2.14	2.14		
1205	Coelogyne nitida	Orchidaceae				0.35
1206	Coelogyne prolifera	Orchidaceae	0.92	7.50	6.52	0.18
1207	Coelogyne stricta	Orchidaceae		0.47		1.42
1208	Neogyna gardneriana	Orchidaceae	0.46		0.72	1.06
1209	Otochilus fuscus	Orchidaceae			6.52	25.66
1210	Otochilus lancilabius	Orchidaceae	9.80	14.99	5.07	0.35
1211	Pholidota articulata	Orchidaceae	1.38	8.68	6.88	1.24
1212	Pholidota imbricata	Orchidaceae				1.59
1213	Pholidota pallida	Orchidaceae		5.13	5.07	0.18
1214	Pholidota protracta	Orchidaceae		0.36	0.36	
1215	Pleione hookeriana	Orchidaceae				3.19
1216	Pleione humilis	Orchidaceae	0.31	0.31		
1217	Pleione praecox	Orchidaceae		0.18		0.53
	Sub-total		33.38	61.37	40.58	44.60
	Cymbidieae					
1218	Cymbidium erythraeum	Orchidaceae		1.37	0.72	1.95
1219	Cymbidium hookerianum	Orchidaceae	0.46	0.46		
1220	Cymbidium iridioides	Orchidaceae		0.18		0.53
	Sub-total		0.46	2.01	0.72	2.48
	Dendrobieae					
1221	Bulbophyllum affine	Orchidaceae	2.14	2.56		1.24
1222	Bulbophyllum bisetum	Orchidaceae	0.46		3.62	
1223	Bulbophyllum creyanum	Orchidaceae	0.92	0.92		
1224	Bulbophyllum cylindraceum	Orchidaceae				1.77

					1	
1225	Bulbophyllum griffithii	Orchidaceae		0.88		2.65
1226	Bulbophyllum gymnopus	Orchidaceae		1.59		4.78
1227	Bulbophyllum hirtum	Orchidaceae		0.12		0.35
1228	Bulbophyllum odoratissimum	Orchidaceae	0.15		5.43	
1229	Bulbophyllum reptans	Orchidaceae		1.47		4.42
1230	Bulbophyllum secundum	Orchidaceae	2.76			0.71
1231	Bulbophyllum sterile	Orchidaceae	0.61	1.08		1.42
1232	Bulbophyllum thomsonii	Orchidaceae		0.53		1.59
1233	Bulbophyllum wallichii	Orchidaceae	15.31			
1234	Cymbidium longifolium	Orchidaceae	0.31	0.31		
1235	Dendrobium amoenum	Orchidaceae		0.36	0.36	
1236	Dendrobium chrysanthum	Orchidaceae	0.46	1.84	1.09	0.88
1237	Dendrobium densiflorum	Orchidaceae	3.68		10.14	5.31
1238	Dendrobium devonianum	Orchidaceae		1.09	1.09	
1239	Dendrobium falconeri	Orchidaceae	0.15		2.90	4.96
1240	Dendrobium fimbriatum	Orchidaceae		1.49	0.72	2.30
1241	Dendrobium jenkinsii	Orchidaceae		1.87	1.81	0.18
1242	Dendrobium longicornu	Orchidaceae				0.53
1243	Dendrobium nobile	Orchidaceae	0.92	2.85	1.81	0.35
1244	Dendrobium spatella	Orchidaceae	0.61		1.81	
1217						
1244	Epigenium fuscescens	Orchidaceae		1.83		5.49
	Epigenium fuscescens Flickingeria fugas	Orchidaceae Orchidaceae	30.63	1.83		5.49
1245			30.63	1.83 20.80	30.80	5.49 38.94
1245	Flickingeria fugas				30.80	
1245	Flickingeria fugas Sub-total				30.80	
1245 1246	Flickingeria fugas Sub-total Epidendreae	Orchidaceae	59.11			38.94
1245 1246	Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum	Orchidaceae	59.11 0.41		1.24	38.94 1.65
1245 1246	Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum Sub-total	Orchidaceae	59.11 0.41		1.24	38.94 1.65
1245 1246 1247	Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum Sub-total Malaxideae	Orchidaceae Orchidaceae Orchidaceae Orchidaceae	0.41 0.41	20.80	1.24	38.94 1.65
1245 1246 1247 1247 1248	Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum Sub-total Malaxideae Liparis cespitosa	Orchidaceae Orchidaceae Orchidaceae Orchidaceae Orchidaceae Orchidaceae	0.41 0.41	20.80	1.24 1.24	38.94 1.65 1.65
1245 1246 1247 1247 1248 1248	Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum Sub-total Malaxideae Liparis cespitosa Oberonia acaulis	Orchidaceae Orchidaceae Orchidaceae Orchidaceae Orchidaceae Orchidaceae	0.41 0.41	20.80	1.24 1.24	38.94 1.65 1.65 0.35
1245 1246 1247 1247 1248 1248 1249 1250	Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum Sub-total Malaxideae Liparis cespitosa Oberonia acaulis Oberonia caulescens	Orchidaceae Orchidaceae Orchidaceae Orchidaceae Orchidaceae Orchidaceae Orchidaceae Orchidaceae	0.41 0.41	20.80 20.80 0.46 2.65	1.24 1.24 2.54	38.94 1.65 1.65 0.35
1245 1246 1247 1247 1248 1248 1249 1250	Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum Sub-total Malaxideae Liparis cespitosa Oberonia acaulis Oberonia falcata	Orchidaceae	59.11 0.41 0.41 0.41 0.46	20.80 20.80 0.46 2.65 1.09	1.24 1.24 2.54	38.94 1.65 1.65 0.35
1245 1246 1247 1247 1248 1248 1249 1250	Flickingeria fugas Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum Sub-total Malaxideae Liparis cespitosa Oberonia acaulis Oberonia caulescens Oberonia falcata Oberonia maxima	Orchidaceae	 59.11 0.41 0.41 0.41 0.46 0.46 0.77 	20.80 20.80 0.46 2.65 1.09 0.77	1.24 1.24 2.54 1.09	38.94 1.65 1.65 0.35 2.65
1245 1246 1247 1247 1248 1248 1249 1250	Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum Sub-total Malaxideae Liparis cespitosa Oberonia caulis Oberonia falcata Oberonia maxima Sub-total	Orchidaceae	 59.11 0.41 0.41 0.41 0.46 0.46 0.77 	20.80 20.80 0.46 2.65 1.09 0.77	1.24 1.24 2.54 1.09	38.94 1.65 1.65 0.35 2.65
1245 1246 1247 1247 1248 1249 1250 1251 1252	Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum Sub-total Malaxideae Liparis cespitosa Oberonia acaulis Oberonia falcata Oberonia maxima Sub-total	Orchidaceae	 59.11 0.41 0.41 0.41 0.46 0.46 0.77 	20.80 20.80 0.46 2.65 1.09 0.77 4.97	1.24 1.24 2.54 1.09 3.62	38.94 1.65 1.65 0.35 2.65
1245 1246 1247 1247 1248 1249 1250 1251 1252	Flickingeria fugasSub-totalEpidendreaeAgrostophyllum callosumSub-totalMalaxideaeLiparis cespitosaOberonia acaulisOberonia acaulisOberonia falcataOberonia maximaSub-totalPodochileaeEria amica	Orchidaceae	 59.11 0.41 0.41 0.41 0.46 0.46 0.77 	20.80 20.80 0.46 2.65 1.09 0.77 4.97 4.97	1.24 1.24 2.54 1.09 3.62	38.94 1.65 1.65 0.35 2.65 3.01
1245 1246 1247 1247 1248 1249 1250 1251 1252 1253 1254	Flickingeria fugasSub-totalEpidendreaeAgrostophyllum callosumSub-totalMalaxideaeLiparis cespitosaOberonia caulisOberonia caulescensOberonia falcataOberonia maximaSub-totalPodochileaeEria amicaEria carinata	Orchidaceae	 59.11 0.41 0.41 0.46 0.46 0.77 1.23 1.23 	20.80 20.80 0.46 2.65 1.09 0.77 4.97 1.45 0.59	1.24 1.24 2.54 1.09 3.62 1.45	38.94 1.65 1.65 0.35 2.65 3.01
1245 1246 1247 1247 1248 1249 1250 1251 1252 1253 1254 1255	Flickingeria fugasSub-totalEpidendreaeAgrostophyllum callosumSub-totalMalaxideaeLiparis cespitosaOberonia acaulisOberonia acaulisOberonia falcataOberonia maximaSub-totalPodochileaeEria amicaEria coronaria	Orchidaceae	 59.11 0.41 0.41 0.41 0.46 0.77 1.23 1.53 	20.80 20.80 0.46 2.65 1.09 0.77 4.97 1.45 0.59	1.24 1.24 1.24 2.54 1.09 3.62 1.45 0.36	38.94 38.94 1.65 1.65 0.35 2.65 3.01 3.01
1245 1246 1247 1247 1248 1249 1250 1251 1252 1253 1254 1255	Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum Sub-total Malaxideae Liparis cespitosa Oberonia acaulis Oberonia caulescens Oberonia falcata Oberonia maxima Sub-total Podochileae Eria amica Eria corinaria Eria discolor	Orchidaceae	 59.11 0.41 0.41 0.41 0.46 0.46 0.77 1.23 1.53 1.53 	20.80 20.80 0.46 2.65 1.09 0.77 4.97 4.97 1.45 0.59 1.89	1.24 1.24 1.24 2.54 1.09 3.62 1.45 0.36	38.94 38.94 1.65 1.65 0.35 2.65 3.01 3.01
1245 1246 1247 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257	Flickingeria fugas Sub-total Epidendreae Agrostophyllum callosum Sub-total Malaxideae Liparis cespitosa Oberonia caulis Oberonia caulescens Oberonia falcata Oberonia maxima Sub-total Podochileae Eria carinata Eria coronaria Eria discolor Eria excavata	Orchidaceae	 59.11 0.41 0.41 0.41 0.46 0.77 1.23 1.53 1.53 0.46 	20.80 20.80 0.46 2.65 1.09 0.77 4.97 4.97 1.45 0.59 1.89	1.24 1.24 1.24 2.54 1.09 3.62 1.45 0.36 9.06	38.94 38.94 1.65 1.65 0.35 2.65 3.01 3.01 1.77 3.54
1245 1246 1247 1247 1248 1249 1250 1251 1251 1253 1254 1255 1256 1257	Flickingeria fugasSub-totalEpidendreaeAgrostophyllum callosumSub-totalMalaxideaeLiparis cespitosaOberonia acaulisOberonia acaulisOberonia falcataOberonia maximaSub-totalPodochileaeEria amicaEria coronariaEria discolorEria excavataEria ferruginea	Orchidaceae Orchidaceae	 59.11 0.41 0.41 0.41 0.46 0.77 1.23 1.53 1.53 0.46 	20.80 20.80 0.46 2.65 1.09 0.77 4.97 4.97 1.45 0.59 1.89 1.89	1.24 1.24 1.24 2.54 1.09 3.62 1.45 0.36 9.06	38.94 38.94 1.65 1.65 0.35 2.65 3.01 3.01 1.77 3.54 0.88

1262	Eria stricta	Orchidaceae		1.45	1.45	
	Sub-total		3.98	8.59	18.84	6.37
	Vandeae					
1263	Aeides multiflorum	Orchidaceae		0.36	0.36	
1264	Aeides roseum	Orchidaceae	0.92			
1265	Cleisostoma filiforme	Orchidaceae		0.48	0.36	0.35
1266	Cleisostoma racemiferum	Orchidaceae		0.24		0.71
1267	Cleisostoma williamsonii	Orchidaceae			1.45	1.06
1268	Gastrochilus acutifolius	Orchidaceae		0.72	0.72	
1269	Gastrochilus calceolaris	Orchidaceae	0.31	0.67	0.36	
1270	Gastrochilus distichus	Orchidaceae	0.31			
1271	Luisia filiformis	Orchidaceae	0.31	0.31		
1272	Luisia zeylanica	Orchidaceae		0.18		0.53
1273	Micropera mannii	Orchidaceae		1.09	1.09	
1274	Papilionanthe teres	Orchidaceae			1.09	
1275	Vanda bicolor	Orchidaceae		0.12		0.35
	Sub-total		1.84	4.16	5.43	3.01
1276	Anipelocissus divasicata	Orchidaceae				
1277	Acampe rigida	Orchidaceae				
1278	Agrostophyllum brevipes	Orchidaceae				
1279	Anoectochilus roxburghii	Orchidaceae				
1280	Bulbophyllum cauliflorum	Orchidaceae				
1281	Bulbophyllum cylindraceum	Orchidaceae				
1282	Bulbophyllum guttulatum	Orchidaceae				
1283	Bulbophyllum leopardinum	Orchidaceae				
1284	Bulbophyllum leptanthum	Orchidaceae				
1285	Bulbophyllum obrienianum	Orchidaceae				
1286	Bulbophyllum spathulatum	Orchidaceae				
1287	Calanthe masuca	Orchidaceae				
1288	Callostylis rigida	Orchidaceae				
1289	Cephalanthera domasonium	Orchidaceae				
1290	Ceratostylis himalaica	Orchidaceae				
1291	Cheirostylis yunnanesis	Orchidaceae				
1292	Chiloschista usneoides	Orchidaceae				
1293	Cleisostoma linearilobatum	Orchidaceae				
1294	Coelogyne corymbosa	Orchidaceae				
1295	Coelogyne ovalis	Orchidaceae				
1296	Coelogyne schultesii	Orchidaceae				
1297	Cryptochilus lutea	Orchidaceae				
1298	Cymbidium bicolor	Orchidaceae				
1299	Cymbidium eburneum	Orchidaceae				
1300	Cymbidium hookerianum	Orchidaceae				
1301	Cymbidium lancifolium	Orchidaceae				

1302	Cymbidium longifolium	Orchidaceae		
1303	Cymbidium mastersii	Orchidaceae		
1304	Dendrobium acinaciforme	Orchidaceae		
1305	Dendrobium aphyllum	Orchidaceae		
1306	Dendrobium denudans	Orchidaceae		
1307	Dendrobium heterocarpum	Orchidaceae		
1308	Dendrobium hookerianum	Orchidaceae		
1309	Dendrobium monticola	Orchidaceae		
1310	Dendrobium moschatum	Orchidaceae		
1311	Dendrobium terminale	Orchidaceae		
1312	Dendrobium transparens	Orchidaceae		
1313	Epigenium amplum	Orchidaceae		
1314	Esmeralda clarkei	Orchidaceae		
1315	Habenaria dentate	Orchidaceae		
1316	lone cirrhata	Orchidaceae		
1317	Lipari bootanensis	Orchidaceae		
1318	Liparis cathcartii	Orchidaceae		
1319	Liparis viridiflora	Orchidaceae		
1320	Listera pinetorum	Orchidaceae		
1321	Luisia zeylanica	Orchidaceae		
1322	Malaxis muscifera	Orchidaceae		
1323	Mycaranthes floribunda	Orchidaceae		
1324	Odontostema glandulosa	Orchidaceae		
1325	Panisea yunnanensis	Orchidaceae		
1326	Papiliolanthe vandarum	Orchidaceae		
1327	Phalaenopsis taenialis	Orchidaceae		
1328	Pleione maculatea	Orchidaceae		
1329	Pleione praecox	Orchidaceae		
1330	Rhynchostylis retusa	Orchidaceae		
1331	Satyrium nepalensis	Orchidaceae		
1332	Schoenorchis gemmata	Orchidaceae		
1333	Spiranthes sinensis	Orchidaceae		
1334	Trichotosia ferruginea	Orchidaceae		
1335	Vanda cristata	Orchidaceae		
1336	Vanda cristata	Orchidaceae		
1337	Vanda griffithii	Orchidaceae		

Note 1: Species listed without RBA% or RD% are those species not recorded in recent RBS survey but listed in earlier surveys or opportunistically by staff of the national park.

Note 2: Species without species number are species listed recurrently. For instance, species listed in the tree plot as well as in the herb plots.

Appendix 3. Faunal Diversity of JSWNP

3.1. Mammals of JSWNP

Name of PA: Jigme Singye Wangchuck National Park Taxa: MAMMALS **Status of** SI. Common Name **Scientific Name** Family Distribu-**IUCN FNCA** CITES No. tion **Red Panda** Ailurus fulgens Ailuridae Moderate VU SCI I 1 Dhole Canidae Abundant 2 Cuon alpinus ΕN Ш 3 **Red Fox** Vulpes vulpes Canidae Rare LC Ш 4 **Clouded Leopard** Neofelis nebulosa Felidae Rare VU SCI Т **Common Leopard** 5 Panthera pardus Felidae Moderate VU SCT L Prionailurus bengalensis 6 Leopard Cat Felidae Moderate LC SCI Ш Asiatic Golden cat Catopuma temmincki Felidae Abundant NT L 7 8 Tiger Panthera tigris tigris Felidae Moderate ΕN SCI T 9 Snow leopard Panthera uncia Felidae Rare VU SCI L Felidae 10 Marbled cat Pardofelis marmorata Moderate NT T Felis chaus Felidae Rare LC Ш 11 Jungle cat Yellow Throated Martes flavigula Mustelidae Abundant LC Ш 12 Marten Common Otter Lutra lutra Mustelidae Moderate L 13 NT Himalayan Black 14 Ursus thibetanus Ursidae Moderate VU SCI I Bear Prionodon-LC Prionodon pardiclor Rare L 15 Spotted Linsang tidae Himalayan Palm 16 Paguma larvata Viverridae Rare LC Ш Civet Binturong/Asian 17 Arctictis biturong Viverridae Rare VU Ш Bearcat Large Indian Civet 18 Verra zibetha Viverridae Rare LC Ш 19 Chinese Pangolin Manis pentadactyla Manidae Rare CR SCI L Crab eating Mon-Herpestidae 20 Herpestesurva Rare LC Ш goose 21 Gaur Bos gaurus Bovidae Rare VU SCI Т 22 GoralNT Naemorhedus goral Bovidae Moderate NT Т SCI Т 23 Serow Capricornis sumatraensis thar Bovidae Moderate NT 24 **Barking Deer** Muntiacus muntjak Cervidae Abundant LC NA 25 Sambar Cervus unicolor Cervidae Abundant VU NA 26 Musk Deer Moschus leucogaster Moschidae Rare ΕN SCI T 27 Asian Elephant Elephas maximus Elephantidae Rare EN SCI Т Sus scrofa Suidae LC NA 28 Wild Boar Abundant Assamese Ma-Cercopithe-29 Macaca assamensis Abundant NT Ш cidae caque

30	Golden Langur	Trachypithecus geei	Cercopithe- cidae	Moderate	EN	SC I	I
31	Grey Langur	Semnopithecus schistaceus	Cercopithe- cidae	Moderate	LC		I
32	Himalayan Crest- less Porcupine	Hystrix bracyhura	Hystricidae	Abundant	LC		NA
33	Malayan Giant Squirrel	Ratufa bicolor	Sciuridae	Moderate	NT		Ш
34	Orange-Bellied himalyan Squirrel	Dremomys lokriah	Sciuridae	Abundant	LC		NA
35	Spotted Giant Flying Squirrel	Petaurista caniceps	Sciuridae	Rare	LC		NA
36	Himalayan Striped Squirrel	Tamiops macclellandi	Sciuridae	Moderate	LC		NA
37	Bhutan Giant Flying Squirrel	Petaurista nobilis	Sciuridae	Rare	NT		NA
38	Asiatic Brush-tailed Procupine	Artherurus macrourus	Hystricidae	Rare	LC		NA
39	House Rat	Rattus rattus	Muridae	Abundant	LC		NA
40	Himalayan field Rat	Rattus nitidus	Muridae		LC		NA
41	Indochinese Forest Rat	Rattus andamanensis	Muridae		LC		NA
42	Himmalayan White-bellied Rat	Niviventer niviventer	Muridae	Abundant	LC		NA
43	Smoke-bellied Rat	Niviventer eha	Muridae		LC		NA
44	Sikkim Mouse	Mus pahari	Muridae		LC		NA
45	Sikkim Vole	Neodon sikimensis	Cricetidae		LC		NA
46	Hodgson's Brown- toothed Shrew	Episoriculus caudatus	Soricidae		LC		NA
47	Asian/House Shrew	Suncus murinus	Soricidae		LC		NA
48	Himalayan Shrew	Soriculus nigrescens	Soricidae		LC		NA
49	Eurasian Pygmy shrew	Sorex minutus	Soricidae		LC		NA
50	Himalayan Pika	Ochotona himalayana	Ochotonidae				
51	Large eared-Pika	Ochotona macrotis	Ochotonidae		LC		NA
52	Himalayan Mole	Euroscaptor micrura	Talpidae		LC		NA
53	Indian Pipistrelle	Pipistrellus coromandra	Vespertilion- idae	Moderate	LC		NA
54	Yellow bellied Weasel	Mustela kathiah	Mustelidae		LC		III

3.2. Birds of JSWNP

SI. No.	Common Name	Scientific Name	Family	IUCN
1	Black Eagle	lctinaetus malaiensis	Accipitridae	LC
2	Crested Serpent Eagle	Spilornis cheela	Accipitridae	LC
3	Northern Goshawk	Accipiter gentilis	Accipitridae	LC
4	Golden Eagle	Aquila chrysaetos	Accipitridae	LC
5	Hen Harrier	Circus cyaneus	Accipitridae	LC
6	Himalayan Griffon	Gyps himalayensis	Accipitridae	NT
7	Palla's Fish Eagle	Haliaeetus leucoryphus	Accipitridae	EN
8	Besra	Accipiter virgatus	Accipitridae	LC
9	Mountain Hawk Eagle	Nisaetus nipalensis	Accipitridae	LC
10	Black-throated Tit	Aegithalos concinnus	Aegithalidae	LC
11	Common iora	Aegithina tiphia	Aegithinidae	LC
12	Oriental Skylark	Alauda gulgula	Alaudidae	LC
13	Common Kingfisher	Alcedo atthis	Alcedinidae	LC
14	Pied Kingfisher	Ceryle rudis	Alcedinidae	LC
15	White-throated Kingfisher	Halcyon smyrnensis	Alcedinidae	LC
16	Crested Kingfisher	Megaceryle lugubris	Alcedinidae	LC
17	Gadwall	Anas strepera	Anatidae	LC
18	Common Shelduck	Tadorna tadorna	Anatidae	LC
19	Eurasian wigeon	Mareca penelope	Anatidae	LC
20	Northern shoveler	Anas clypeata	Anatidae	LC
21	Forktail Swift	Apus pacificus	Apodidae	LC
22	Himalayan Swiftlet	Collocalia brevirostris	Apodidae	LC
23	Cattle Egret	Bubulcus ibis	Ardeidae	LC
24	White-bellied Heron	Ardea insignis	Aroleidae	CR
25	Great Hornbill	Buceros bicornis	Bucerotidae	VU
26	Wreathed hornbill	Aceros undulatus	Bucerotidae	VU
27	Rufous-necked Hornbill	Aceros nipalensis	Bucerotidae	VU
28	Eurasian Thick-knee	Burhinus oedicnemus	Burhinidae	LC
29	Bar-winged Flycatcher Shrike	Hemipus picatus	Campephagidae	LC
30	Grey-chinned Minivet	Pericrocotus solaris	Campephagidae	LC
31	Long-tailed Minivet	Pericrocotus ethologus	Campephagidae	LC
32	Scarlet Minivet	Pericrocotus flammeus	Campephagidae	LC
33	Short-billed Minivet	Pericrocotus brevirostris	Campephagidae	LC
34	Black-winged cuckooshrike	Lalage melaschistos	Campephagidae	LC
35	Grey Nightjar	Caprimulgus indicus	Caprimulgidae	LC
36	Eurasian Treecreeper	Certhia familiaris	Certhiidae	LC
37	Rusty-flanked Treecreeper	Certhia nipalensis	Certhiidae	LC
38	Brown-throated Treecreeper	Certhia discolor	Certhiidae	LC
39	Mountain Tailorbird	Phyllergates cucullatus	Cettiidae	LC
40	Slaty-bellied Tesia	Tesia olivea	Cettiidae	LC

41	Black-faced Warbler	Abroscopus schisticeps	Cettiidae	LC
42	Red-wattled Lapwing	Vanellus indicus	Charadriidae	LC
43	River Lapwing	Vanellus duvaucelii	Charadriidae	NT
44	Golden-fronted Leafbird	Chloropsis aurifrons	Chloropseidae	LC
45	Orange-bellied Leafbird	Chloropsis hardwickii	Chloropseidae	LC
46	Black Stork	Ciconia nigra	Ciconiidae	LC
47	Brown Dipper	Cinclus pallasii	Cinclidae	LC
48	White-throated Dipper	Cinclus cinclus	Cinclidae	LC
49	Black-throated Prinia	Prinia atrogularis	Cisticolidae	LC
50	Plain Prinia	Prinia inornata	Cisticolidae	LC
51	Grey-headed Canary Flycatcher	Culicicapa ceylonensis	Cisticolidae	LC
52	Hill Prinia	Prinia atrogularis	Cisticolidae	LC
53	Striated Prinia	Prinia crinigera	Cisticolidae	LC
54	Grey-crowned Prinia	Prinia cinereocapilla	Cisticolidae	VU
55	Common Tailorbird	Orthotomus sutorius	Cisticolidae	LC
56	Barred Cuckoo Dove	Macropygia unchall	Columbidae	LC
57	Emerald Dove	Chalcophaps indica	Columbidae	LC
58	Snow Pigeon	Columba leuconota	Columbidae	LC
59	Mountain Imperial Pigeon	Ducula badia	Columbidae	LC
60	Oriental Turtle Dove	Streptopelia orientalis	Columbidae	LC
61	Rock Pigeon	Columba livia	Columbidae	LC
62	Speckled Wood Pigeon	Columba hodgsonii	Columbidae	LC
63	Spotted Dove	Spilopelia chinensis	Columbidae	LC
64	Wedge-tailed Green Pigeon	Treron sphenura	Columbidae	LC
65	Dollar Bird	Eurystomus orientalis	Coraciidae	LC
66	House Crow	Corvus splendens	Corvidae	LC
67	Spotted Nutcracker	Nucifraga caryocatactes	Corvidae	LC
68	Collared Treepie	Dendrocitta frontalis	Corvidae	LC
69	Common Green Magpie	Cissa chinensis	Corvidae	LC
70	Eurasian Jay	Garrulus glandarius	Corvidae	LC
71	Grey Treepie	Dendrocitta formosae	Corvidae	LC
72	Large-billed Crow	Corvus macrorhynchos	Corvidae	LC
73	Red billed Chough	Pyrrhocorax pyrrhocorax	Corvidae	LC
74	Yellow-billed Blue Magpie	Urocissa flavirostris	Corvidae	LC
75	Himalayan Cuckoo	Cuculus saturatus	Cuculidae	LC
76	Hodgson's Hawk Cuckoo	Hierococcyx fugax	Cuculidae	LC
77	Eurasian Cuckoo	Cuculus canorus	Cuculidae	LC
78	Greater Coucal	Centropus sinensis	Cuculidae	LC
79	Green-billed Malkoha	Phaenicophaeus tristis	Cuculidae	LC
80	Large Hawk Cuckoo	Hierococcyx sparverioides	Cuculidae	LC
81	Chestnut-winged Cuckoo	Clamator coromandus	Cuculidae	LC
82	Grey-bellied Cuckoo	Cacomantis passerinus	Cuculidae	LC
83	Lesser Cuckoo	Cuculus poliocephalus	Cuculidae	LC

84	Oriental Cuckoo	Cuculus optatus	Cuculidae	LC
85	Indian Cuckoo	Cuculus micropterus	Cuculidae	LC
86	Fire-breasted Flowerpecker	Dicaeum ignipectus	Dicaeidae	LC
87	Plain Flowerpecker	Dicaeum concolor	Dicaeidae	LC
88	Lesser Racket-tailed Drongo	Dicrurus remifer	Dicruridae	LC
89	Ashy Drongo	Dicrurus leucophaeus	Dicruridae	LC
90	Black Drongo	Dicrurus macrocercus	Dicruridae	LC
91	Spangled Drongo	Dicrurus hottentottus	Dicruridae	LC
92	Bronzed drongo	Dicrurus aeneus	Dicruridae	LC
93	Little Bunting	Emberiza pusilla	Emberizidae	LC
94	Crested Bunting	Melophus lathami	Emberizidae	LC
95	Rustic bunting	Emberiza rustica	Emberizidae	VU
96	White-rumped Munia	Lonchura striata	Estrididae	LC
97	Scaly-breasted Munia	Lonchura punctulata	Estrildidae	LC
98	Long-tailed Broadbill	Psarisomus dalhousiae	Eurylaimidae	LC
99	Common Kestrel	Falco tinnunculus	Falconidae	LC
100	Common Rosefinch	Carpodacus erythrinus	Fringiilidae	LC
101	Plain Mountain Finch	Leucosticte nemoricola	Fringiilidae	LC
102	Red-fronted Rosefinch	Carpodacus punicus	Fringiilidae	LC
103	Scarlet Finch	Haematospiza sipahi	Fringiilidae	LC
104	White-winged Grosbeak	Mycerobas carnipes	Fringiilidae	LC
105	Brown Bullfinch	Pyrrhula nipalensis	Fringiilidae	LC
106	Spot-winged Grosbeak	Mycerobas melanozanthos	Fringiilidae	LC
107	Yellow-breasted Greenfinch	Carduelis spinoides	Fringiilidae	LC
108	Himalayan white-browed rosefinch	Carpodacus spp.	Fringiilidae	LC
109	Brandt's Mountain Finch	Leucosticte brandti	Fringiilidae	LC
110	Dark-breasted Rosefinch	Carpodacus nipalensis	Fringiilidae	LC
111	Red-headed Bullfinch	Pyrrhula erythrocephala	Fringiilidae	LC
112	Gold-naped Finch	Pyrrhoplectes epauletta	Fringiilidae	LC
113	Small Pratincole	Glareola lactea	Glaroelidae	LC
114	Asian House Martin	Delichon dasypus	Hirundinidae	LC
115	Nepal House Martin	Delichon nipalensis	Hirundinidae	LC
116	Red-rumped Swallow	Cercopis daurica	Hirundinidae	LC
117	Ibisbill	lbidorhyncha struthersii	Ibidorhynchidae	LC
118	Yellow-rumped Honeyguide	Indicator xanthonotus	Indicatoridae	NT
119	Brown Shrike	Lanius cristatus	Laniidae	LC
120	Grey-backed Shrike	Lanius tephronotus	Laniidae	LC
121	Long-tailed Shrike	Lanius schach	Laniidae	LC
122	Brown-headed Gull	Chroicocephalus brunniceph- alus	Laridae	LC
123	Blue-winged Laughingthrush	Trochalopteron squamatum	Leiotrichidae	LC
124	Grey-sided Laughingthrush	Garrulax caerulatus	Leiotrichidae	LC
125	Himalayan Cutia	Cutia nipalensis	Leiotrichidae	LC

126	Scaly Laughingthrush	Trochalopteron subunicolor	Leiotrichidae	LC
127	Spotted Laughingthrush	Garrulax ocellatus	Leiotrichidae	LC
128	Streaked Laughingthrush	Trochalopteron lineatum	Leiotrichidae	LC
129	Striated Laughingthrush	Garrulax striatus	Leiotrichidae	LC
130	Red-faced Liocichla	Liocichla phoenicea	Leiotrichidae	LC
131	Blue-winged minla	Minla cyanouroptera	Leiotrichidae	LC
132	Black-faced Laughingthrush	Garrulax affinis	Leiotrichidae	LC
133	Blue-bearded Bee-eater	Nyctyornis athertoni	Meropidae	LC
134	Black-naped Monarch	Hypothymis azurea	Monarchidae	LC
135	Olive-backed Pipit	Anthus hodgsoni	Motacillidae	LC
136	Blyth's Pipit	Anthus godlewskii	Motacillidae	LC
137	Rosy Pipit	Anthus roseatus	Motacillidae	LC
138	Paddyfield Pipit	Anthus rufulus	Motacillidae	LC
139	Grey Wagtail	Motacilla cinerea	Motacillidae	LC
140	White Wagtail	Motacilla alba	Motacillidae	LC
141	Citrine Wagtail	Motacilla citreola	Motacillidae	LC
142	Ultramarine Flycatcher	Ficedula superciliaris	Muscicapidae	LC
143	White-browed Bush Robin	Tarsiger indicus	Muscicapidae	LC
144	White-capped Redstart	Phoenicurus leucocephalus	Muscicapidae	LC
145	Dark-sided Flycatcher	Muscicapa sibirica	Muscicapidae	LC
146	Slaty-blue Flycatcher	Ficedula hodgsonii	Muscicapidae	LC
147	Rufous-gorgetted Flycatcher	Ficedula strophiata	Muscicapidae	LC
148	Ferruginous Flycatcher	Muscicapa ferruginea	Muscicapidae	LC
149	Pale Blue Flycatcher	Cyornis unicolor	Muscicapidae	LC
150	Verditer Flycatcher	Eumyias thalassina	Muscicapidae	LC
151	Pygmy Blue Flycatcher	Muscicapella hodgsoni	Muscicapidae	LC
152	White-winged Redstart	Phoenicurus erythrogaster	Muscicapidae	LC
153	White-throated Redstart	Phoenicurus schisticeps	Muscicapidae	LC
154	Plumbeous Water Redstart	Rhyacornis fuliginosus	Muscicapidae	LC
155	White-capped Water Redstart	Chaimarrornis leucocephalus	Muscicapidae	LC
156	Black Redstart	Phoenicurus ochruros	Muscicapidae	LC
157	Blue-fronted Redstart	Phoenicurus frontalis	Muscicapidae	LC
158	Hodgson's Redstart	Phoenicurus hodgsoni	Muscicapidae	LC
159	Spotted Forktail	Enicurus maculatus	Muscicapidae	LC
160	Slaty-backed Forktail	Enicurus schistaceus	Muscicapidae	LC
161	Little Forktail	Enicurus scouleri	Muscicapidae	LC
162	Little Pied Flycatcher	Ficedula westermanni	Muscicapidae	LC
163	Oriental Magpie Robin	Copsychus saularis	Muscicapidae	LC
164	Gray Bush Chat	Saxicola ferrea	Muscicapidae	LC
165	Common Stonechat	Saxicola torquata	Muscicapidae	LC
166	Chestnut-bellied Rock Thrush	Monticola rufiventris	Muscicapidae	LC
167	Large Niltava	Niltava grandis	Muscicapidae	LC
168	Rufous-bellid Niltava	Niltava sundara	Muscicapidae	LC

169	Small Niltava	Niltava macgrigoriae	Muscicapidae	LC
170	Taiga Flycatcher	Ficedula albicilla	Muscicapidae	LC
170	Himalayan Bluetail	Tarsiger cyanurus rufilatus	Muscicapidae	LC
172	Rufous-breasted Bush Robin	Tarsiger hyperythrus	Muscicapidae	LC
172	Blue-throated Blue Flycatcher	Cyornis rubeculoides	Muscicapidae	LC
-	•	-	Muscicapidae	LC
174 175	Blue-and-White Flycatcher	Cyanoptila cyanomelana Muscicapa dauurica		LC
-	Asian Brown Flycatcher		Muscicapidae	LC
176	White-rumped shama	Copsychus malabaricus	Muscicapidae	
177	Blue rock thrush	Monticola solitarius	Muscicapidae	LC
178	Green-tailed Sunbird	Aethopyga nipalensis	Nectariniidae	LC
179	Fire-tailed Sunbird	Aethopyga ignicauda	Nectariniidae	LC
180	Black-throated Sunbird	Aethopyga saturata	Nectariniidae	LC
181	Crimson Sunbird	Aethopyga siparaja	Nectariniidae	LC
182	Mrs. Gould's Sunbird	Aethopyga gouldiae	Nectariniidae	LC
183	Scarlet-backed Flowerpeker	Dicaeum cruentatum	Nectariniidae	LC
184	Streaked Spiderhunter	Arachnothera magna	Nectariniidae	LC
185	Eurasian Golden Oriole	Oriolus oriolus	Orioliidae	LC
186	Black-hooded Oriole	Oriolus xanthornus	Orioliidae	LC
187	Maroon Oriole	Oriolus traillii	Orioliidae	LC
188	Slender-billed Oriole	Oriolus tenuirostris	Orioliidae	LC
189	Brown Parrotbill	Cholornis unicolor	Paradoxornithidae	LC
190	Golden-breasted Fulvetta	Lioparus chrysotis	Paradoxornithidae	LC
191	White-browed Fulvetta	Fulvetta vinipectus	Paradoxornithidae	LC
192	Great Tit	Parus major	Paridae	LC
193	Black-browed tit	Aegithalos iouschistos	Paridae	LC
194	Fire-capped Tit	Cephalopyrus flammiceps	Paridae	LC
195	Coal Tit	Parus ater	Paridae	LC
196	Grey-crested Tit	Parus dichrous	Paridae	LC
197	Rufous-vented Tit	Parus rubidiventris	Paridae	LC
198	Yellow-browed Tit	Sylviparus modestus	Paridae	LC
199	Green-backed Tit	Parus monticolus	Paridae	LC
200	Sultan Tit	Melanochlora sultanea	Paridae	LC
201	Yellow-cheeked Tit	Parus spilonotus	Paridae	LC
202	Eurasian Tree Sparrow	Passer montanus	Passeridae	LC
203	Russet Sparrow	Passer cinnamomeus	Passeridae	LC
204	Alpine Accentor	Prunella collaris	Passeridae	LC
205	House Sparrow	Passer domesticus	Passeridae	LC
206	Great Cormorant	Phalacrocorax carbo	Phalacrocoracidae	LC
207	Blood pheasant	Ithaginis cruentus	Phasianidae	LC
208	Hill Partridge	Arborophila torqueola	Phasianidae	LC
209	Chestnut-breasted Partridge	Arborophila mandellii	Phasianidae	VU
210	Grey Peacock Pheasant	Polyplectron bicalcaratum	Phasianidae	LC
211	Kalij Pheasant	Lophura leucomelanos	Phasianidae	LC

212	Red Junglefowl	Gallus gallus	Phasianidae	LC
213	Rufous-throated Partridge	Arborophila rufogularis	Phasianidae	LC
214	Satyr Tragopan	Tragopan satyra	Phasianidae	NT
215	Himalayan Monal	Lophophorus impejanus	Phasianidae	LC
216	Hume's Leaf Warbler	Phylloscopus humei	Phylloscopidae	LC
217	Large-billed Leaf Warbler	Phylloscopus magnirostris	Phylloscopidae	LC
218	Tickell's Leaf Warbler	Phylloscopus affinis	Phylloscopidae	LC
219	White-spectacled Warbler	Phylloscopus intermedius	Phylloscopidae	LC
220	Yellow-bellied Warbler	Abroscopus superciliaris	Phylloscopidae	LC
221	Lesser Yellownape	Picus chlorolophus	Picidae	LC
222	Darjeeling Woodpecker	Dendrocopos darjellensis	Picidae	LC
223	Fulvous-breasted Woodpecker	Dendrocopos macei	Picidae	LC
224	Bay Woodpecker	Blythipicus pyrrhotis	Picidae	LC
225	Crimson-breasted Woodpecker	Dendrocopos cathpharius	Picidae	LC
226	Pale-Headed Woodpecker	Gecinulus grantia	Picidae	LC
227	Grey-capped Pygmy Woodpecker	Dendrocopos canicapillus	Picidae	LC
228	Greater Yellownape	Picus flavinucha	Picidae	LC
229	Grey-headed Woodpecker	Picus canus	Picidae	LC
230	Rufous Woodpecker	Celeus brachyurus	Picidae	LC
231	Rufous-bellied Woodpecker	Dendrocopos hyperythrus	Picidae	LC
232	Speckled Piculet	Picumnus innominatus	Picidae	LC
233	White-browed Piculet	Sasia ochracea	Picidae	LC
234	Hooded Pitta	Pitta sordida	Pittidae	LC
235	Scaly-breasted wren-babbler	Pnoepyga albiventer	Pnoepygidae	LC
236	Large Woodshrike	Tephrodornis virgatus	Prionopidae	LC
237	Rufous-Breasted Accentor	Prunella strophiata	Prunellidae	LC
238	Ashy Bulbul	Hemixos flavala	Pycnonotidae	LC
239	Red-whiskered Bulbul	Pycnonotus jocosus	Pycnonotidae	LC
240	Black Bulbul	Hypsipetes leucocephalus	Pycnonotidae	LC
241	Black-crested Bulbul	Pycnonotus melanicterus	Pycnonotidae	LC
242	Mountain Bulbul	Ixos mcclellandii	Pycnonotidae	LC
243	Red-vented Bulbul	Pycnonotus cafer	Pycnonotidae	LC
244	Himalayan Bulbul	Pycnonotus leucogenys	Pycnonotidae	LC
245	Striated Bulbul	Alcurus striatus	Pycnonotidae	LC
246	White-throated Bulbul	Alophoixus flaveolus	Pycnonotidae	LC
247	White-breasted Waterhen	Amaurornis phoenicurus	Rallidae	LC
248	Ruddy-breasted Crake	Zapornia fusca	Rallidae	LC
249	Eurasian Coot	Fulica atra	Rallidae	LC
250	Black-tailed Crake	Porzana bicolor	Rallidae	LC
251	Blue-throated Barbet	Megalaima asiatica	Ramphastidae	LC
252	Golden-throated Barbet	Megalaima franklinii	Ramphastidae	LC
253	Blue-eared Barbet	Megalaima australis	Ramphastidae	LC
254	Great Barbet	Megalaima virens	Ramphastidae	LC

255	Lineated Barbet	Megalaima lineata	Ramphastidae	LC
256	Goldcrist	Regulus regulus	Regulidae	LC
257	White-throated Fantail	Rhipidura albicollis	Rhipiduridae	LC
258	Yellow-bellied Fantail	Chelidorhynx hypoxanthus	stenostiridae	LC
259	Common Greenshank	Tringa nebularia	Scolopacidae	LC
260	Eurasian Woodcock	Scolopax rusticola	Scolopacidae	LC
261	Beautiful Nuthatch	Sitta formosa	Sittidae	VU
262	Chestnut-bellied Nuthatch	Sitta cinnamoventris	Sittidae	LC
263	Velvet-fronted Nuthatch	Sitta frontalis	Sittidae	LC
264	White-tailed Nuthatch	Sitta himalayensis	Sittidae	LC
265	Wallcreeper	Tichodroma muraria	Sittidae	LC
266	Asian Barred Owlet	Glaucidium cuculoides	Strigidae	LC
267	Collared Owlet	Glaucidium brodiei	Strigidae	LC
268	Jungle Owlet	Glaucidium radiatum	Strigidae	LC
269	Tawny Fish Owl	Ketupa flavipes	Strigidae	LC
270	Common Myna	Acridotheres tristis	Sturmidae	LC
271	Spot-winged Starling	Saroglossa spiloptera	Sturmidae	LC
272	Great Myna	Acridotheres grandis	Sturnidae	LC
273	Common Hill Myna	Gracula religiosa	Sturnidae	LC
274	Chestnut-tailed Starling	Sturnia malabarica	Sturnidae	LC
275	Aberrant Bush Warbler	Cettia flavolivacea	Sylviidae	LC
276	Chestnut-crowned Bush Warbler	Cettia major	Sylviidae	LC
277	Pale-footed Bush Warbler	Cettia pallidipes	Sylviidae	LC
278	Yellow-vented Warbler	Phylloscopus cantator	Sylviidae	LC
279	Blyth's Leaf Warbler	Phylloscopus reguloides	Sylviidae	LC
280	Golden-spectacled Warbler	Seicercus burkii	Sylviidae	LC
281	Chesnut-crowned Warbler	Seicercus castaniceps	Sylviidae	LC
282	Broad-billed Warbler	Tickellia hodgsoni	Sylviidae	LC
283	Grey-sided Bush Warbler	Cettia brunnifrons	Sylviidae	LC
284	Ashy-throated Warbler	Phylloscopus maculipennis	Sylviidae	LC
285	Blyth's Reed Warbler	Acrocephalus dumetorum	Sylviidae	LC
286	Brownish-flanked Bush Warbler	Cettia fortipes	Sylviidae	LC
287	Dusky Warbler	Phylloscopus fuscatus	Sylviidae	LC
288	Greenish Warbler	Phylloscopus trochiloides	Sylviidae	LC
289	Grey-cheeked Warbler	Seicercus poliogenys	Sylviidae	LC
290	Grey-hooded Warbler	Seicercus xanthoschistos	Sylviidae	LC
291	Lemon-rumped Warbler	Phylloscopus chloronotus	Sylviidae	LC
292	Tickell's Leaf Warbler	Phylloscopus affinis	Sylviidae	LC
293	Grey-bellied Tesia	Tesia Cyaniventer	Sylviidae	LC
294	White-bellied Erpornis	Erpornis zantholeuca	Sylviidae	LC
295	Whistler's Warbler	Seicercus whistleri	Sylviidae	LC
296	Greater Rufous-headed Parrotbill	Psittiparus ruficeps	Sylviidae	LC
297	Grey-headed parrotbill	Psittiparus gularis	Sylviidae	LC

298	Bar-winged Wren Babbler	Spelaeornis troglodytoides	Timaliidae	LC
299	Pygmy Wren Babbler	Pnoepyga pusilla	Timaliidae	LC
300	Rufous-capped Babbler	Stachyris ruficeps	Timaliidae	LC
301	Rufous-fronted Babbler	Stachyris rufifrons	Timaliidae	LC
302	White-browed Scimitar Babbler	Pomatorhinus schisticeps	Timaliidae	LC
303	White-browed Shrike Babbler	Pteruthius flaviscapis	Timaliidae	LC
304	Rusty-cheeked Scimitar Babbler	Pomatorhinus erythrocnemis	Timaliidae	LC
305	Streak-breasted Scimitar Babbler	Pomatorhinus ruficollis	Timaliidae	LC
306	Coral-billed Scimitar Babbler	Pomatorhinus ferruginosus	Timaliidae	LC
307	Grey-throated Babbler	Stachyris nigriceps	Timaliidae	LC
308	Jungle Babbler	Turdoides striata	Timaliidae	LC
309	Pin-striped Tit Babbler	Mixornis gularis	Timaliidae	LC
310	Slender-billed Scimitar Babbler	Xiphirhynchus superciliaris	Timaliidae	LC
311	Golden Babbler	Stachyris chrysaea	Timaliidae	LC
312	Spotted Wren Babbler	Spelaeornis formosus	Timaliidae	LC
313	Rufous-throated Wren Babbler	Spelaeornis caudatus	Timaliidae	NT
314	White-naped Yuhina	Yuhina bakeri	Timaliidae	LC
315	Rufous-vented Yuhina	Yuhina occipitalis	Timaliidae	LC
316	Black-chinned Yuhina	Yuhina nigrimenta	Timaliidae	LC
317	Stripe-throated Yuhina	Yuhina gularis	Timaliidae	LC
318	Whiskered Yuhina	Yuhina flavicollis	Timaliidae	LC
319	Rufous-necked Laughingthrush	Garrulax ruficollis	Timaliidae	LC
320	Lesser Necklaced Laughingthrush	Garrulax monileger	Timaliidae	LC
321	Chestnut-crowned Laughingthrush	Garrulax erythrocephalus	Timaliidae	LC
322	Bhutan Laughingthrush	Trochalopteron imbricatum	Timaliidae	LC
323	Chestnut-tailed Minla	Minla strigula	Timaliidae	LC
324	Red-tailed Minla	Minla ignotincta	Timaliidae	LC
325	Long-tailed Sibia	Heterophasia picaoides	Timaliidae	LC
326	Rufous Sibia	Heterophasia capistrata	Timaliidae	LC
327	Rufous-winged Fulvetta	Alcippe castaneceps	Timaliidae	LC
328	Nepal Fulvetta	Alcippe nipalensis	Timaliidae	LC
329	Yellow-throated Fulvitta	Alcippe cinerea	Timaliidae	LC
330	Silver-eared Mesia	Leiothrix argentauris	Timaliidae	LC
331	Hoary-throated barwing	Actinodura nipalensis	Timaliidae	LC
332	Rusty-fronted Barwing	Gampsorhynchus rufulus	Timaliidae	LC
333	White-crested Laughingthrush	Garrulax leucolophus	Timaliidae	LC
334	White-throated Laughingthrush	Garrulax albogularis	Timaliidae	LC
335	Eurasian Wren	Troglodytes troglodytes	Troglodytidae	LC
336	Ward's Trogon	Harpactes wardi	Trugonidae	NT
337	Red-headed Trogon	Harpactes erythrocephalus	Trugonidae	LC
338	Blue Whistling Thrush	Myophonus caeruleus	Turdidae	LC
339	Blue-capped Rock Thrush	Monticola cinclorhynchus	Turdidae	LC
340	Orange-headed Thrush	Zoothera citrina	Turdidae	LC

341	White-collared Blackbird	Turdus albocinctus	Turdidae	LC
342	Grey-winged Blackbird	Turdus boulboul	Turdidae	LC
343	Green Cochoa	Cochoa viridis	Turdidae	LC
344	Grandala	Grandala coelicolor	Turdidae	LC
345	Alpine Thrush	Zoothera mollissima	Turdidae	LC
346	Long-billed Thrush	Zoothera monticola	Turdidae	LC
347	Scaly Thrush	Zoothera dauma	Turdidae	LC
348	Plain-backed Thrush	Zoothera mollissima	Turdidae	LC
349	Himalayan Forest Thrush	Zoothera salimalii	Turdidae	LC
350	Black-headed Shrike Babbler	Pteruthius rufiventer	Vireonidae	LC
351	Common Hoopoe	Upupa epops	Upupidae	LC
352	Oriental White-eye	Zosterops palpebrosus	Zosteropidae	LC
353	Striated Yuhina	Yuhina castaniceps	Zosteropidae	LC

3.3. Herpetofauna of JSWNP

SI. No.	Common Name	Scientific Name	Family	Status of Distribu- tion
1	Asian Vine Snake	Ahaetulla prasina	Colubridae	Rare
2	Himalayan Mountain Keelback	Amphiesma platyceps	Colubridae	Moderate
3	Multi Banded Cat Snake	Boiga multifaciata	Colubridae	Moderate
4	Tawny cat Snake	Boiga ochracea	Colubridae	Moderate
5	Copper-Headed Trinket	Coelognathus radiatus	Colubridae	Moderate
6	Painted Beonzeback	Dendrelaphis pictus	Colubridae	Rare
7	Blue Bronzeback tree snake	Dendrelaphis cyanochloris	Colubridae	Rare
8	Common wolf snake	Lycodon aulicus	Colubridae	Moderate
9	White-Banded Wolf Snake	Lycodon septentrionalis	Colubridae	Moderate
10	Walnut Kukri Snake	Oligodon juglandifer	Colubridae	Moderate
11	Russel's Kukri Snake	Oligodon taeniolatus	Colubridae	Moderate
12	Eastern Trinket	Orthriophis cantoris	Colubridae	Moderate
13	Striped Trinket	Orthriophis taeniurus	Colubridae	Moderate
14	Larged-Eyed False Cobra	Pseudoxenodon macrops	Colubridae	Moderate
15	Indo-Chinese Ratsnake	Ptyas korros	Colubridae	Rare
16	Green Ratsnake	Ptyas nigromarginata	Colubridae	Moderate
17	Orange-Collard Keelback	Rhabdophis himalayanus	Colubridae	Moderate
18	Collard Black-headed Snake	Sibynophis collaris	Colubridae	Moderate
19	Monocled Cobra	Naja Kaouthia	Elapidae	Moderate
20	Common Krait	Bungarus caeruleus	Elapidae	Moderate
21	Lesser Black Krait	Bungarus lividus	Elapidae	Rare
22	King Cobra	Ophiophagus hannah	Elapidae	Rare
23	MacClelland's Coral Snake	Sinomicrurus macclellandi	Elapidae	Rare
24	Burmese Python	Python bivittatus	Pythonidae	Rare

25	Mountain Pit Viper	Ovophis monticola	Viperidae	Rare
26	Himalayan Pit Viper	Protobothrops himalayanus	Viperidae	Moderate
25	Common Garden Lizard	Calotes Versicolor	Agamidae	Moderate
26	Jerdon's Forest Lizard	Calotes jerdoni	Agamidae	Moderate
27	Variegated Mountain Lizard	Japalura variegata	Agamidae	Rare
28	Brook's House Gecko	Hemidactylus brookii	Gekkonidae	Moderate
29	Flat-tailed Gecko	Hemidactylus platyurus	Gekkonidae	Moderate
30	Sikkimese Rock Skink	Asymblepharus sikimmensis	Scincidae	Moderate
31	Himalayan Litter Skink	Sphenomorphus indicus	Scincidae	Moderate
32	Spotted Forest Skink	Sphenomorphus maculatus	Scincidae	Rare
33	Himalan Torrent Frog	Amolops marmoratus	Ranidae	Moderate
34	Hill stream frog	Amolops formosus	Ranidae	Rare
35	Sikkim Lazy Toad	Scutiger Sikimmensis	Bufonidae	Rare
36	Himalayan Toad	Duttaphrynus himalayanus	Bufonidae	Moderate
37	Common Indian Toad	Duttaphrynus melanostictus	Bufonidae	Moderate
38	Skittering Frog	Euphlyctis cyanophlyctis	Dicroglossidae	Moderate
39	Sikkim Paa Frog	Nanorana leibegii	Dicroglossidae	Rare
40	Himalayan Tree Frog	Polypedates himalayanus	Rhacophoridae	Rare
41	Common tree frog	Polypedates teraiensis	Rhacophoridae	Rare
42	Giant Tree Frog	Rhacophorus maximus	Rhacophoridae	Moderate
43	Keeled Box Turtle	Cuora mouhotii	Geoemydidae	Rare

3.4. Fishes of JSWNP

SI. No.	Common Name	Scientific Name	Family	IUCN	Distribution
1	Golden masheer	Tor putitora	Cyprinidae	EN	Mangdichu, Bertichu, Harachu confluence
2	Copper mahseer	Neolissochilus hex- agonolepis	Cyprinidae	NT	Mangdichu, Bertichu, Harachu, Yangdigangchu, Wachenchu, Adha lake
3	Point-nosed snowtrout	Schizothrax progastus	Cyprinidae	LC	Mangdichu, Bertichu, Yangdi- gangchu, Harachu
4	Golden/spotted snow trout	Schizothrax cf. pla- giostomus	Cyprinidae	NE	Yangdigangchu, Wanglingchu, Harachu, Adhachu
5	Blunt-snout snow trout	Schizothrax richardsonii	Cyprinidae	NE	Yangdigangchu, Mangdichu, Nabjichu confluence, Harachu
6	Lamta garra (Sucker fish	Garra lamta	Cyprinidae	LC	Bertichu, Yangdigangchu, Nabji- chu, Harachu
7	Khasi garra, sucker fish	Garra lissorhynchus	Cyprinidae	LC	Bertichu
8	Stone roller	Garra annandalei	Cyprinidae	LC	Bertichu, Baebgangchu
9	Common carp	Cyprinus carpio	Cyprinidae	VU	Adha lake and Berti fishery ponds
10	Guntea loach	Schistura cf. horai	Nemacheil- idae	LC	Bertichu, Yangdigangchu, Harachu

11	Torrent stone carp	Psilorhynchus hom- aloptera	Psilo- rhynchidae	LC	Harachu and Adha machu
12	Stone cat	Exostoma labiatum	Sisoridae	LC	Golipongchu, Wanglingchu, Kellachu
13	Sucatus catfish, Remora catfish	Pseudecheneis sulcata	Sisoridae	LC	Wanglingchu and Adhachu
14	Torrent catfish	Parachiloglanis cf. hodgarti	Sisoridae	LC	Adha machu, Lopokhachu
15	Brown trout, River trout	Salmo trutta fario	Salmonidae	LC	Nikachu, Adhachu
16	Indian mottled eel	Anguilla bengalensis bengalensis	Anguillidae	NE	Yangdigangchu, Baebgangchu

3.5. Butterflies of JSWNP

SI. No.	Common Name	Scientific Name	Family
1	Absent Ace	Halpe filda	Hesperiidae (Skippers)
2	Banded Ace	Halpe zema	Hesperiidae (Skippers)
3	Bengal Spotted Flat	Celaenorrhinus patura putara	Hesperiidae (Skippers)
4	Bevan's Swift	Borbo bevani	Hesperiidae (Skippers)
5	Blue-Spotted Scrub Hopper	Aeromachus kali	Hesperiidae (Skippers)
6	Branded Orange Awlet	Burara oedipodea belesis	Hesperiidae (Skippers)
7	Brown Bush Bob	Pedesta pandita	Hesperiidae (Skippers)
8	Brown Pied Flat	Coladenia agni	Hesperiidae (Skippers)
9	Chestnut Angle	Odontoptilum angulatum	Hesperiidae (Skippers)
10	Chestnut Bob	lambrix salsala	Hesperiidae (Skippers)
11	Chocolate Demon	Ancistroides nigrita	Hesperiidae (Skippers)
12	Colon Swift	Caltoris cahira	Hesperiidae (Skippers)
13	Common Awl	Hasora barda	Hesperiidae (Skippers)
14	Common Banded Awl	Hasora chromus chromus	Hesperiidae (Skippers)
15	Common Palm Dart	Telicota colon stinga	Hesperiidae (Skippers)
16	Common Wight	Iton semamora	Hesperiidae (Skippers)
17	Confucian Dart	Potanthus spp.	Hesperiidae (Skippers)
18	Conjoined Swift	Pelopidas conjuncta	Hesperiidae (Skippers)
19	Contiguous Swift	Polytremis lubricans	Hesperiidae (Skippers)
20	Crenulate Orange Flat	Pintara tabrica	Hesperiidae (Skippers)
21	Dark Palm Dart	Telicota bambusae bambusae	Hesperiidae (Skippers)
22	Dark Straight Swift	Parnara apostata	Hesperiidae (Skippers)
23	Dark Velvet Bob	Koruthaialos butleri	Hesperiidae (Skippers)
24	Detached Dart	Potanthus trachala tytleri	Hesperiidae (Skippers)
25	Double-spotted Flat	Celaenorrhinus pyrrha	Hesperiidae (Skippers)
26	Dusky Yellow-Breasted Flat	Gerosis phisara	Hesperiidae (Skippers)
27	Fringed Dawnfly	Capila penicillatun	Hesperiidae (Skippers)
28	Fulvous Pied Flat	Pseudocoladenia dan	Hesperiidae (Skippers)
29	Grass Demon	Udaspes folus	Hesperiidae (Skippers)

30	Green Awlet	Burara vasutana	Hesperiidae (Skippers)
31	Green-striped Palmer	Pirdana hyela	Hesperiidae (Skippers)
32	Grey Swift	Parnara bada	Hesperiidae (Skippers)
33	Hairy Angle	Dharpa hanria	Hesperiidae (Skippers)
34	Himalayan White Flat	Seseria dohertyi dohertyi	Hesperiidae (Skippers)
35	Indian Ace	Halpe homolea	Hesperiidae (Skippers)
36	Indian Awlking	Choaspes benjaminii	Hesperiidae (Skippers)
37	Indian Dart	Potanthus pseudomaesa pseudomaesa	Hesperiidae (Skippers)
38	Large Branded Swift	Pelopidas subochracea	Hesperiidae (Skippers)
39	Large Spotted Flat	Celaenorrhinus patula	Hesperiidae (Skippers)
40	Light Straw Ace	Pithauria stramineipennis	Hesperiidae (Skippers)
41	Lucas' Ace	Sovia lucasii magna	Hesperiidae (Skippers)
42	Mussoorie Bush Bob	Pedesta masurinsis	Hesperiidae (Skippers)
43	Northern Spotted Ace	Thoressa cerata	Hesperiidae (Skippers)
44	Orange-Striped Awlet	Burara jaina jaina	Hesperiidae (Skippers)
45	Orange-Tail Awl	Bibasis sena	Hesperiidae (Skippers)
46	Plain Palm Dart	Cephrenes acalle	Hesperiidae (Skippers)
47	Purple and Gold Flitter	Zographetus satwa	Hesperiidae (Skippers)
48	Purple Redeye	Matapa purpurascens	Hesperiidae (Skippers)
49	Restricted Demon	Notocrypta curvifascia	Hesperiidae (Skippers)
50	Rice Swift	Borbo cinnara	Hesperiidae (Skippers)
51	Sikkim Ace	Halpe sikkima	Hesperiidae (Skippers)
52	Slate Awl	Hasora anura	Hesperiidae (Skippers)
53	Small Branded Swift	Pelopidas mathias	Hesperiidae (Skippers)
54	Small Green Awlet	Burara amara	Hesperiidae (Skippers)
55	Smaller Dartlet	Oriens goloides	Hesperiidae (Skippers)
56	Snowy Angle	Darpa pteria	Hesperiidae (Skippers)
57	Spotted Demon	Notocrypta feisthameli	Hesperiidae (Skippers)
58	Spotted Redeye	Pudicitia pholus	Hesperiidae (Skippers)
59	Spotted Snow Flat	Tagiades menaka	Hesperiidae (Skippers)
60	Straight Swift	Parnara guttata	Hesperiidae (Skippers)
61	Striped Dawnfly	Caipla javadeva	Hesperiidae (Skippers)
62	Swinhoe's Flat	Celaenorrhinus zea	Hesperiidae (Skippers)
63	Tamil Grass Dart	Taractrocera ceramas	Hesperiidae (Skippers)
64	Tawny Angle	Ctenoptilum vasava	Hesperiidae (Skippers)
65	Tree Flitter	Hyarotis adrastus	Hesperiidae (Skippers)
66	Tufted Ace	Sebastonyma dolopia	Hesperiidae (Skippers)
67	Tytler's Multi-Spotted Flat	Celaenorrhinus ratna tytleri	Hesperiidae (Skippers)
68	Variable Ace	Thoressa hyrie	Hesperiidae (Skippers)
69	Veined Scrub Hopper	Aeromachus stigmatus	Hesperiidae (Skippers)
70	Water Snow Flat	Tagiades litigiosa	Hesperiidae (Skippers)
71	White Yellow-breasted Flat	Gerosis sinica	Hesperiidae (Skippers)

72	White-striped Snow Flat	Tagiades cohaerens	Hesperiidae (Skippers)
73	Yellow Flat	Mooreana trichoneura	Hesperiidae (Skippers)
74	Yellow Spot Swift	Polytremis eltola	Hesperiidae (Skippers)
75	Albocerulean	Udara albocaerulea	Lycaenidae (Blues)
76	Angled Sunbeam	Curetis acuta	Lycaenidae (Blues)
77	Azure Sapphire	Heliophorus moorei	Lycaenidae (Blues)
78	Banded Lineblue	Prosotas aluta	Lycaenidae (Blues)
79	Banded Royal	Rachana jalindra	Lycaenidae (Blues)
80	Bicolor Cupid	Shijimia moorei	Lycaenidae (Blues)
81	Bi-Spot Royal	Ancema ctesia	Lycaenidae (Blues)
82	Blue Imperial	Ticherra acte	Lycaenidae (Blues)
83	Blue Tit	Chliaria kina	Lycaenidae (Blues)
84	Branded Yamfly	Yasoda tripunctata	Lycaenidae (Blues)
85	Bright Sunbeam	Curetis bulis	Lycaenidae (Blues)
86	Burmese Bushblue	Arhopala birmana	Lycaenidae (Blues)
87	Centaur Oakblue	Arhopala centaurus	Lycaenidae (Blues)
88	Chocolate Royal	Remelana jangala	Lycaenidae (Blues)
89	Club Silverline	Spindasis syama	Lycaenidae (Blues)
90	Common Ciliate Blue	Anthene emolus	Lycaenidae (Blues)
91	Common Copper	Lycaena phlaeas	Lycaenidae (Blues)
92	Common Flash	Rapala nissa	Lycaenidae (Blues)
93	Common Gem	Poritia hewitsoni	Lycaenidae (Blues)
94	Common Hedge Blue	Acytolepis puspa	Lycaenidae (Blues)
95	Common Lineblue	Prosotas nora	Lycaenidae (Blues)
96	Common Pierrot	Castalius rosimon	Lycaenidae (Blues)
97	Common Quaker	Neopithecops zalmora	Lycaenidae (Blues)
98	Common Tinsel	Catapaecilma major	Lycaenidae (Blues)
99	Common Tit	Hypolycaena erylus	Lycaenidae (Blues)
100	Copper Flash	Rapala pheretima	Lycaenidae (Blues)
101	Cornelian	Deudorix epijarbas	Lycaenidae (Blues)
102	Dark Cerulean	Jamides bochus	Lycaenidae (Blues)
103	Dark Grass Blue	Zizeeria karsandra	Lycaenidae (Blues)
104	Dark Pierrot	Tarucus ananda	Lycaenidae (Blues)
105	Dark Sapphire	Heliophorus indicus	Lycaenidae (Blues)
106	Dingy Lineblue	Petrelaea dana	Lycaenidae (Blues)
107	Elbowed Pierrot	Caleta elna	Lycaenidae (Blues)
108	Fluffy Tit	Zeltus amasa	Lycaenidae (Blues)
109	Forest Pierrot	Taraka hamada	Lycaenidae (Blues)
110	Forest Quaker	Pithecops corvus	Lycaenidae (Blues)
111	Forget-Me-Not	Catochrysops strabo	Lycaenidae (Blues)
112	Great Darkie	Allotinus drumila	Lycaenidae (Blues)
113	Green Oakblue	Arhopala eumolphus	Lycaenidae (Blues)
114	Hooked Oakblue	Arhopala paramuta	Lycaenidae (Blues)

115	Indian Cupid	Everes lacturnus	Lycaenidae (Blues)
116	Indigo Flash	Rapala varuna	Lycaenidae (Blues)
117	Khaki Silverline	Spindasis rukmini	Lycaenidae (Blues)
118	Large Fourline Blue	Nacaduba pactolus	Lycaenidae (Blues)
119	Large Hedge Blue	Celastrina huegelii	Lycaenidae (Blues)
120	Lesser Grass Blue	Zizina otis	Lycaenidae (Blues)
121	Lime Blue	Chilades lajus	Lycaenidae (Blues)
122	Long-banded Silverline	Spindasis lohita	Lycaenidae (Blues)
123	Malayan	Megisba malaya	Lycaenidae (Blues)
124	Mandarin Blue	Charana mandarinus	Lycaenidae (Blues)
125	Metallic Cerulean	Jamides alecto	Lycaenidae (Blues)
126	Pale Grass Blue	Pseudozizeeria maha	Lycaenidae (Blues)
127	Pale Hedge Blue	Udara dilecta	Lycaenidae (Blues)
128	Pea Blue	Lampides boeticus	Lycaenidae (Blues)
129	Plain Hedge Blue	Celastrina lavendularis	Lycaenidae (Blues)
130	Plane	Bindahara phocides	Lycaenidae (Blues)
131	Powdered Oakblue	Arhopala bazalus	Lycaenidae (Blues)
132	Powdery Green Sapphire	Heliophorus tamu	Lycaenidae (Blues)
133	Purple Sapphire	Heliophorus epicles	Lycaenidae (Blues)
134	Rounded Six-Lineblue	Nacaduba berenice	Lycaenidae (Blues)
135	Scarce Shot Silverline	Spindasis elima	Lycaenidae (Blues)
136	Slate Flash	Rapala manea	Lycaenidae (Blues)
137	Spotted Royal	Tajuria maculata	Lycaenidae (Blues)
138	Tailed Cupid	Everes argiades	Lycaenidae (Blues)
139	Tailless Lineblue	Prosotas dubiosa	Lycaenidae (Blues)
140	Tailless Plushblue	Flos areste	Lycaenidae (Blues)
141	Transparent 6-Lineblue	Nacaduba kurava	Lycaenidae (Blues)
142	Water Hairstreak	Euaspa milionia	Lycaenidae (Blues)
143	White-banded Hedge Blue	Lestranicus transpectus	Lycaenidae (Blues)
144	Zebra Blue	Leptotes spp.	Lycaenidae (Blues)
145	Angled Red Forester	Lethe chandica	Nymphalidae (Brush-footed)
146	Autumn Leaf	Doleschallia bisaltide	Nymphalidae (Brush-footed)
147	Banded Treebrown	Lethe confusa	Nymphalidae (Brush-footed)
148	Bhutan Sergeant	Athyma jina jina	Nymphalidae (Brush-footed)
149	Bicolor Commodore	Parasarpa zayla	Nymphalidae (Brush-footed)
150	Black Forester	Lethe vindhya	Nymphalidae (Brush-footed)
151	Black Prince	Rohana parisatis	Nymphalidae (Brush-footed)
152	Blackvein Sergeant	Athyma ranga	Nymphalidae (Brush-footed)
153	Blue Admiral	Kaniska canace	Nymphalidae (Brush-footed)
154	Blue Duchess	Euthalia duda	Nymphalidae (Brush-footed)
155	Blue Duke	Euthalia durga	Nymphalidae (Brush-footed)
156	Blue Glassy Tiger	Tirumala limniace	Nymphalidae (Brush-footed)
157	Blue Oakleaf	Kallima horsfieldi	Nymphalidae (Brush-footed)

158	Blue Pansy	Junonia orithiya	Nymphalidae (Brush-footed)
159	Blue-Striped Palmfly	Elymnias patna	Nymphalidae (Brush-footed)
160	Blue-Tail Jester	Symbrenthia niphanda	Nymphalidae (Brush-footed)
161	Brighteye Bushbrown	Mycalesis nicotia	Nymphalidae (Brush-footed)
162	Broad-Banded Sailer	Neptis sankara	Nymphalidae (Brush-footed)
163	Bronze Duke	Euthalia nara	Nymphalidae (Brush-footed)
164	Brown Argus	Callerebia hyagriva	Nymphalidae (Brush-footed)
165	Brown Prince	Rohana parvata	Nymphalidae (Brush-footed)
166	Chestnut Tiger	Parantica sita	Nymphalidae (Brush-footed)
167	Chocolate Pansy	Junonia iphita	Nymphalidae (Brush-footed)
168	Circe	Hestina nama	Nymphalidae (Brush-footed)
169	Clear Sailer	Neptis clinia susruta	Nymphalidae (Brush-footed)
170	Club Beak	Libythea myrrha	Nymphalidae (Brush-footed)
171	Commander	Moduza procris	Nymphalidae (Brush-footed)
172	Commodore	Auzakia danava	Nymphalidae (Brush-footed)
173	Common Beak	Libythea lepita	Nymphalidae (Brush-footed)
174	Common Bushbrown	Mycalesis perseus	Nymphalidae (Brush-footed)
175	Common Castor	Ariadne merione	Nymphalidae (Brush-footed)
176	Common Crow	Euploea core	Nymphalidae (Brush-footed)
177	Common Duffer	Discophora sondaica	Nymphalidae (Brush-footed)
178	Common Earl	Tanaecia julii	Nymphalidae (Brush-footed)
179	Common Evening Brown	Melanitis leda	Nymphalidae (Brush-footed)
180	Common Faun	Faunis canens	Nymphalidae (Brush-footed)
181	Common Fivering	Ypthima baldus	Nymphalidae (Brush-footed)
182	Common Jester	Symbrenthia hippoclus	Nymphalidae (Brush-footed)
183	Common Lascar	Pantoporia hordonia	Nymphalidae (Brush-footed)
184	Common Leopard	Phalanta phalantha	Nymphalidae (Brush-footed)
185	Common Map	Cyrestis thyodamas	Nymphalidae (Brush-footed)
186	Common Maplet	Chersonesia risa	Nymphalidae (Brush-footed)
187	Common Nawab	Polyura athamas	Nymphalidae (Brush-footed)
188	Common Palmfly	Elymnia hypermnestra	Nymphalidae (Brush-footed)
189	Common Sailer	Neptis hylas	Nymphalidae (Brush-footed)
190	Common Satyr	Aulocera swaha	Nymphalidae (Brush-footed)
191	Common Sergeant	Athyma perius	Nymphalidae (Brush-footed)
192	Common Treebrown	Lethe rohria	Nymphalidae (Brush-footed)
193	Common Woodbrown	Lethe sidonis	Nymphalidae (Brush-footed)
194	Common Yeoman	Cirrochroa tyche	Nymphalidae (Brush-footed)
195	Constable	Dichorrhagia nesimachus	Nymphalidae (Brush-footed)
196	Courtesan	Euripus nyctelius	Nymphalidae (Brush-footed)
197	Creamy Sailer	Neptis soma	Nymphalidae (Brush-footed)
198	Cruiser	Vindula erota	Nymphalidae (Brush-footed)
199	Dark Archduke	Lexias dirtea	Nymphalidae (Brush-footed)
200	Dark Blue Tiger	Tirumala septentrionis	Nymphalidae (Brush-footed)

201	Dark Catseye	Zipaetis scylax	Nymphalidae (Brush-footed)
202	Dark Evening Brown	Melanitis phedima	Nymphalidae (Brush-footed)
203	Dark-Branded Bushbrown	Mycalesis mineus	Nymphalidae (Brush-footed)
204	Dingiest Sailer	Neptis harita	Nymphalidae (Brush-footed)
205	Dingy Sailer	Neptis pseudovikasi	Nymphalidae (Brush-footed)
206	Doherty's Satyr	Aulocera loha	Nymphalidae (Brush-footed)
207	Dusky Diadem	Ethope himachala	Nymphalidae (Brush-footed)
208	Dusky Labyrinth	Neope yama	Nymphalidae (Brush-footed)
209	Eastern Courtier	Sephisa chandra	Nymphalidae (Brush-footed)
210	Elongated Sergeant	Athyma orientalis	Nymphalidae (Brush-footed)
211	French Duke	Euthalia franciae	Nymphalidae (Brush-footed)
212	Gaudy Baron	Euthalia lubentina	Nymphalidae (Brush-footed)
213	Glassy Tiger	Parantica aglea	Nymphalidae (Brush-footed)
214	Golden Emperor	Golden Emperor	Nymphalidae (Brush-footed)
215	Grand Duchess	Euthalia patala	Nymphalidae (Brush-footed)
216	Great Archduke	Lexias cyanipardus	Nymphalidae (Brush-footed)
217	Great Eggfly	Hypolimnas bolina	Nymphalidae (Brush-footed)
218	Great Nawab	Polyura eudamippus	Nymphalidae (Brush-footed)
219	Great Yellow Sailer	Neptis radha	Nymphalidae (Brush-footed)
220	Green Commodore	Sumalia daraxa	Nymphalidae (Brush-footed)
221	Green Duke	Euthalia sahadeva	Nymphalidae (Brush-footed)
222	Grey Baron	Euthalia anosia	Nymphalidae (Brush-footed)
223	Grey Pansy	Junonia atlites	Nymphalidae (Brush-footed)
224	Himalayan Fivering	Ypthima sakra	Nymphalidae (Brush-footed)
225	Himalayan Jester	Symbrenthia brabira	Nymphalidae (Brush-footed)
226	Himalayan Sergeant	Athyma opalina	Nymphalidae (Brush-footed)
227	Hockey Sticksailer	Neptis nycteus	Nymphalidae (Brush-footed)
228	Indian Fritillary	Argyreus hyperbius	Nymphalidae (Brush-footed)
229	Indian Purple Emperor	Apatura ambica	Nymphalidae (Brush-footed)
230	Indian Red Admiral	Vanessa indica	Nymphalidae (Brush-footed)
231	Indian Tortoiseshell	Aglais cashmiriensis	Nymphalidae (Brush-footed)
232	Jezebel Palmfly	Elymnias vasudeva	Nymphalidae (Brush-footed)
233	Jungle Glory	Thaumantis diores	Nymphalidae (Brush-footed)
234	Large Silverstripe	Childrena childreni	Nymphalidae (Brush-footed)
235	Large Threering	Ypthima nareda	Nymphalidae (Brush-footed)
236	Large Yeoman	Cirrochroa aoris	Nymphalidae (Brush-footed)
237	Lemon Pansy	Junonia lemonias	Nymphalidae (Brush-footed)
238	Leopard Lacewing	Cethosia cyane	Nymphalidae (Brush-footed)
239	Lilacfork	Lethe sura	Nymphalidae (Brush-footed)
240	Lilacine Bushbrown	Mycalesis francisca	Nymphalidae (Brush-footed)
241	Long-Branded Blue Crow	Euploea algea	Nymphalidae (Brush-footed)
242	Long-Branded Bushbrown	Mycalesis visala	Nymphalidae (Brush-footed)
243	Moore's Bushbrown	Mycalesis heri	Nymphalidae (Brush-footed)

244	Nepal Comma	Polygonia agnicula	Nymphalidae (Brush-footed)
245	Newar Three-ring	Ypthima newara	Nymphalidae (Brush-footed)
246	Nigger	Orsotrioena medus	Nymphalidae (Brush-footed)
247	Northern Jungle Queen	Sticopthalma camadeva	Nymphalidae (Brush-footed)
248	Orange Oakleaf	Kallima inachus	Nymphalidae (Brush-footed)
249	Orange Staff Sergeant	Athyma cama	Nymphalidae (Brush-footed)
250	Orange-backed Freak	Calinaga brahma	Nymphalidae (Brush-footed)
251	Painted Lady	Vanessa cardui	Nymphalidae (Brush-footed)
252	Pale Forester	Lethe latiaris	Nymphalidae (Brush-footed)
253	Pale Hockeystick Sailer	Neptis manasa manasa	Nymphalidae (Brush-footed)
254	Pallid Argus	Callerebia scanda	Nymphalidae (Brush-footed)
255	Pallid Faun	Melanocyma faunula	Nymphalidae (Brush-footed)
256	Panther	Neurosigma siva	Nymphalidae (Brush-footed)
257	Pasha	Herona marathus	Nymphalidae (Brush-footed)
258	Peacock Pansy	Junonia almana	Nymphalidae (Brush-footed)
259	Plain Earl	Tanaecia jahnu	Nymphalidae (Brush-footed)
260	Plain Sailer	Neptis cartica	Nymphalidae (Brush-footed)
261	Popinjay	Stibochiona nicea	Nymphalidae (Brush-footed)
262	Powdered Baron	Euthalia monina kisava	Nymphalidae (Brush-footed)
263	Queen of Spain Fritillary	Issoria lathonia	Nymphalidae (Brush-footed)
264	Red Caliph	Enispe euthymius	Nymphalidae (Brush-footed)
265	Red Lacewing	Cethosia biblis	Nymphalidae (Brush-footed)
266	Ringed Argus	Callerebia annada	Nymphalidae (Brush-footed)
267	Rusty Forester	Lethe bhairava	Nymphalidae (Brush-footed)
268	Scarce Red Forester	Lethe distans	Nymphalidae (Brush-footed)
269	Scarce White Commodore	Sumalia zulema	Nymphalidae (Brush-footed)
270	Sergeant Emperor	Mimathyma chevana	Nymphalidae (Brush-footed)
271	Sergeant Major	Abrota ganga	Nymphalidae (Brush-footed)
272	Siren	Hestina persimilis	Nymphalidae (Brush-footed)
273	Small Staff Sergeant	Athyma zeroca	Nymphalidae (Brush-footed)
274	Small Yellow Sailer	Neptis miah	Nymphalidae (Brush-footed)
275	Sordid Emperor	Chitoriasordida	Nymphalidae (Brush-footed)
276	Spotted Palmfly	Elymnias malelas	Nymphalidae (Brush-footed)
277	Staff Sergeant	Athyma selenophora	Nymphalidae (Brush-footed)
278	Stately Nawab	Polyura doldon	Nymphalidae (Brush-footed)
279	Straight Banded Treebrown	Lethe verma	Nymphalidae (Brush-footed)
280	Streaked Baron	Euthalia alpheda	Nymphalidae (Brush-footed)
281	Striped Blue Crow	Euploea mulciber	Nymphalidae (Brush-footed)
282	Striped Tiger	Danaus genutia	Nymphalidae (Brush-footed)
283	Studded Sergeant	Studded Sergeant	Nymphalidae (Brush-footed)
284	Tabby	Pseudergolis wedah	Nymphalidae (Brush-footed)
285	Tailed Labyrinth	Neope bharda	Nymphalidae (Brush-footed)
286	Tailed Red Forester	Lethe sinorix	Nymphalidae (Brush-footed)

287	Tamil Yeoman	Cirrochroa thais	Nymphalidae (Brush-footed)
288	Tiger Brown	Orinoma damaris	Nymphalidae (Brush-footed)
289	Vagrant	Vagrans egista	Nymphalidae (Brush-footed)
290	Variegated Rajah	Charaxes kahruba	Nymphalidae (Brush-footed)
291	Veined Labyrinth	Neope pulaha pulaha	Nymphalidae (Brush-footed)
292	White Commodore	Parasarpa dudu	Nymphalidae (Brush-footed)
293	White Emperor	Helcyra hemina	Nymphalidae (Brush-footed)
294	Whitebar Bushbrown	Mycalesis anaxias	Nymphalidae (Brush-footed)
295	White-Edged Blue Baron	Euthalia phemius	Nymphalidae (Brush-footed)
296	White-edged Woodbrown	Lethe visrava	Nymphalidae (Brush-footed)
297	White-patch Sergeant	Athyma punctata	Nymphalidae (Brush-footed)
298	Wood Mason's Bushbrown	Mycalesis suaveolens	Nymphalidae (Brush-footed)
299	Yellow Coster	Acraea issoria	Nymphalidae (Brush-footed)
300	Yellow Dryad	Aemona amathusia	Nymphalidae (Brush-footed)
301	Yellow Kaiser	Penthema lisarda	Nymphalidae (Brush-footed)
302	Yellow Owl	Neorina hilda	Nymphalidae (Brush-footed)
303	Yellow Pansy	Junonia hierta	Nymphalidae (Brush-footed)
304	Yellow Sailer	Neptis ananta	Nymphalidae (Brush-footed)
305	Yellow Woodbrown	Lethe nicetas	Nymphalidae (Brush-footed)
306	Bhutan Glory	Bhutanitis lidderdalii	Papilionidae (Swallowtails)
307	Blue Peacock	Papilio arcturus	Papilionidae (Swallowtails)
308	Common Birdwing	Troides helena	Papilionidae (Swallowtails)
309	Common Blue Apollo	Parnassius hardwickii	Papilionidae (Swallowtails)
310	Common Bluebottle	Graphium sarpedon	Papilionidae (Swallowtails)
311	Common Jay	Graphium doson	Papilionidae (Swallowtails)
312	Common Mime	Papilio clytia	Papilionidae (Swallowtails)
313	Common Mormon	Papilio polytes	Papilionidae (Swallowtails)
314	Common Peacock	Papilio bianor	Papilionidae (Swallowtails)
315	Common Raven	Papilio castor	Papilionidae (Swallowtails)
316	Common Rose	Pachliopta aristolochiae	Papilionidae (Swallowtails)
317	Common Windmill	Byasa polyeuctes	Papilionidae (Swallowtails)
318	Fivebar Swordtail	Graphium antiphates	Papilionidae (Swallowtails)
319	Fourbar Swordtail	Graphium agetes	Papilionidae (Swallowtails)
320	Glassy Bluebottle	Graphium cloanthus	Papilionidae (Swallowtails)
321	Golden Birdwing	Troides aeacus	Papilionidae (Swallowtails)
322	Great Mormon	Papilio memnon	Papilionidae (Swallowtails)
323	Great Windmill	Byasa dasarada	Papilionidae (Swallowtails)
324	Great Zebra	Great Zebra	Papilionidae (Swallowtails)
325	Krishna Peacock	Papilio krishna	Papilionidae (Swallowtails)
326	Lime Butterfly	Papilio demoleus	Papilionidae (Swallowtails)
327	Paris Peacock	Papilio paris	Papilionidae (Swallowtails)
328	Red Helen	Papilio helenus	Papilionidae (Swallowtails)
329	Redbreast	Papilio alcmenor	Papilionidae (Swallowtails)

330	Rose Windmill	Byasa latreillei	Papilionidae (Swallowtails)
331	Sixbar Swordtail	Graphium eurous	Papilionidae (Swallowtails)
332	Spangle	Papilio protenor	Papilionidae (Swallowtails)
333	Tailed Jay	Graphium agamemnon	Papilionidae (Swallowtails)
334	Tailed Redbreast	Papilio bootes	Papilionidae (Swallowtails)
335	Tawny Mime	Papilio agestar	Papilionidae (Swallowtails)
336	Veined Jay	Graphium chironides	Papilionidae (Swallowtails)
337	Yellow Helen	Papilio nephelus	Papilionidae (Swallowtails)
338	Bath White	Pontia daplidice	Pieridae (Whites and Yellows)
339	Bhutan Blackvein	Aporia harrietae	Pieridae (Whites and Yellows)
340	Bhutia Extended White	Pieris extensa bhutya	Pieridae (Whites and Yellows)
341	Chocolate Albatross	Appias lyncida	Pieridae (Whites and Yellows)
342	Common Albatross	Appias albina	Pieridae (Whites and Yellows)
343	Common Emigrant	Catopsilia pomona	Pieridae (Whites and Yellows)
344	Common Grass Yellow	Eurema hecabe	Pieridae (Whites and Yellows)
345	Common Gull	Cepora nerissa	Pieridae (Whites and Yellows)
346	Dark Clouded Yellow	Colias fieldii	Pieridae (Whites and Yellows)
347	Great Blackvein	Aporia agathon	Pieridae (Whites and Yellows)
348	Great Orange Tip	Hebomoia glaucippe	Pieridae (Whites and Yellows)
349	Green-Veined White	Pieris melete	Pieridae (Whites and Yellows)
350	Hill Jezebel	Delias belladonna	Pieridae (Whites and Yellows)
351	Indian Cabbage White	Pieris canidia	Pieridae (Whites and Yellows)
352	Large Cabbage White	Pieris brassicae	Pieridae (Whites and Yellows)
353	Lesser Gull	Cepora nadina	Pieridae (Whites and Yellows)
354	Mottled Emigrant	Catopsilia pyranthe	Pieridae (Whites and Yellows)
355	One-spot Grass Yellow	Eurema andersonii	Pieridae (Whites and Yellows)
356	Pale Jezebel	Delias sanaca	Pieridae (Whites and Yellows)
357	Plain Puffin	Appias indra	Pieridae (Whites and Yellows)
358	Plain Sulphur	Dercas lycorias	Pieridae (Whites and Yellows)
359	Red-base Jezebel	Delias pasithoe	Pieridae (Whites and Yellows)
360	Red-Breast Jezebel	Delias acalis	Pieridae (Whites and Yellows)
361	Red-spot Jezebel	Delias descombesi	Pieridae (Whites and Yellows)
362	Red-Spot Sawtooth	Prioneris clemanthe	Pieridae (Whites and Yellows)
363	Spot Puffin	Appias lalage	Pieridae (Whites and Yellows)
364	Spotless Grass Yellow	Eurema laeta	Pieridae (Whites and Yellows)
365	Spotted Sawtooth	Prioneris thestylis	Pieridae (Whites and Yellows)
366	Tailed Sulphur	Dercas verhuelli	Pieridae (Whites and Yellows)
367	Three-Spot Grass Yellow	Eurema blanda	Pieridae (Whites and Yellows)
368	Tree Yellow	Gandaca harina	Pieridae (Whites and Yellows)
369	Yellow Jezebel	Delias agostina	Pieridae (Whites and Yellows)
370	Yellow Orange-tip	lxias pyrene	Pieridae (Whites and Yellows)
371	Columbine	Stiboges nymphidia	Riodinidae (Judies and Punches)
372	Dark Judy	Abisara fylla	Riodinidae (Judies and Punches)

373	Lesser Punch	Dodona dipoea	Riodinidae (Judies and Punches)
374	Mixed Punch	Dodona ouida	Riodinidae (Judies and Punches)
375	Orange Punch	Dodona egeon	Riodinidae (Judies and Punches)
376	Punchinello	Zemeros flegyas	Riodinidae (Judies and Punches)
377	Striped Punch	Dodona adonira	Riodinidae (Judies and Punches)
378	Tailed Judy	Abisara neophron	Riodinidae (Judies and Punches)
379	Tailed Punch	Dodona eugenes	Riodinidae (Judies and Punches)

3.6. Dragonflies and Damselflies of JSWNP

SI. No.	Species Name	Family
ANISOP	TERA: DRAGONFLY	
1	Aeshna petalura	Aeshnidae
2	Polycanthagyna erythromelas	Aeshnidae
3	Chlorogomphus mortoni	Chlorogomphidae
4	Watanabeopetalia atkinsoni	Chlorogomphidae
5	Anisogomphus bivittatus	Gomphidae
6	Lamelligomphus risi	Gomphidae
7	Perissogomphus stevensi	Gomphidae
8	Crocothemis erythraea	Libellulidae
9	Crocothemis servilia	Libellulidae
10	Diplacodes nebulosa	Libellulidae
11	Diplacodes trivialis	Libellulidae
12	Lyriothemis bivittata	Libellulidae
13	Orthetrum glaucum	Libellulidae
14	Orthetrum internum	Libellulidae
15	Orthetrum luzonicum	Libellulidae
16	Orthetrum pruinosum	Libellulidae
17	Orthetrum sabina	Libellulidae
18	Orthetrum triangulare	Libellulidae
19	Palpopleura sexmaculata	Libellulidae
20	Pantala flavescens	Libellulidae
21	Sympetrum commixtum	Libellulidae
22	Sympetrum hypomelas	Libellulidae
23	Tramea virginia	Libellulidae
24	<i>Trithemis aurora</i>	Libellulidae
25	Trithemis festiva	Libellulidae
26	<i>Trithemis pallidinervis</i>	Libellulidae
27	Macromia moorei	Macromidae
ZYGOP	TERA: DAMSELFLY	
1	Caliphaea spp.	Calopterygidae
2	Neurobasis chinensis	Calopterygidae
3	Aristocypha cuneata	Chlorocyphidae

4	Aristocypha quadrimaculata	Chlorocyphidae
5	Libellago lineata	Chlorocyphidae
6	Aciagrion pallidum	Coenagrionidae
7	Ceriagrion fallax	Coenagrionidae
8	Ischnura rubilio	Coenagrionidae
9	Pseudagrion rubriceps	Coenagrionidae
10	Anisopleura comes	Eupaeidae
11	Anisopleura subplatystyla	Eupaeidae
12	Bayadera indica	Eupaeidae
13	Megalestes gyalsey	Synlestidae
14	Indolestes cyaneus	Lestidae
15	Calicnemia eximia	Platycnemididae

Appendix 4. Summary Sheet for Trong LFMA

Summ	ary Results for I	Forest Manag	gement Ar	ea: Trong (Gewog				
	Area Distribu	tion					Aver-		
Unit	Non-Pro- duction	Protec- tion	Producti	on	Total		age basal area	Aver. Stand Volume	No of Operable sample
ha	248.1	538.5	1045.5		1832.1		(m2/ ha)	(m3/ha)	plots
%	14%	29%	57%		100%		23.6	302	245
	Forest Type D	istribution							
Unit	Hemlock	Fir	Spruce	Mix. Con.	Blue- pine	Chirp- ine	Hard- wood	Mixed HC	Total
%	0%	0%	0%	0%	0%	0%	84%	16%	100%
	Age distributi	on				Stand typ	e distribu	tion	
Unit	young	immature	mature	Over- mature	Total	planta- tion	natural	coppice	Total
%	10%	22%	67%	1%	100%	1%	99%	0%	100%
	Canopy closu	re				Condition	n		
Unit	dense	closed	open	un- stocked	Total	good	aver- age	poor	Total
%	13%	56%	27%	5%	100%	45%	41%	14%	100%
Site Co	ndition								
	Slope	1	1	Erosiven	ess	1	Soil Cove	er	
Unit	gentle	moderate	steep	stable	moder- ate	unsta- ble	high	moder- ate	low
%	40%	37%	24%	54%	36%	11%	30%	55%	14%
Forest	Use								
	Intensive Side	Uses		Extensiv	e Side Uses				
Unit	grazing	sokshing	lopping	grazing	soksh- ing	lopping			
ha	632.8	23.8	140.5	300.8	41.0	171.6			
%	35%	1%	8%	16%	2%	9%			
NWFP	Occurence and	Firewood			1				
	NWFP abunda	ant			NWFP spa	arse			
Unit	Firewood	Bamboo	Cane	Daph- ne	Fire- wood	Bamboo	Cane	Daphne	
ha	976.6	270.5	99.6	4.9	379.9	273.2	349.3	124.3	
%	53%	15%	5%	0%	21%	15%	19%	7%	-
Potent	ial Production								
	Timber								
Unit	Drashing	Cham	Tsim	Poles, posts	Total				
Ntot	17356	7130	3276	5197	32959				
N/ha	17	7	3	5	32				
m3	128263	7021	779	398	136461				
m3/ ha	122.7	6.7	0.7	0.4	130.5				

	Firewood					
Unit	> 49cm	30-49cm	20-29 cm	10-19 cm	Total	
Ntot	7534	28620	43323	124845	204322	
N/ha	7	27	41	119	195	
m3	38808	24167	11860	8852	83687	
m3/ ha	37.1	23.1	11.3	8.5	80.0	
	Sivicultural Measures					
Unit	Planting	Thinning	Felling (fire- wood)	Felling (tim- ber)	No Ac- tivity	
ha	126.5	270.9	362.7	147.4	943.7	
%	7	15	20	8	52	
	Yield Regulat	ion				
	AAC		2460	m3		
	AAC		2.4	m3/ha		
	Prod. Potentia	al / AAC	89	years		

Table 35: Summary sheet for Trong LFMA.

Appendix 5. Summary sheet for Jigmechholing LFMA

Summ	ary Results fo	r Forest M	anagemer	nt Area: Jign	nechholing	Gewog			
	Area Distrib	ution		•			Average	Aver.	No of
Unit	Non Forest	Protec- tion	Inoper- able	Produc- tion	Total		basal area	Stand Volume	operable sample
ha	66.2	110.3	79.3	882.2	1138.0		(m2/ha)	(m3/ha)	plots
%	6%	10%	7%	78%	100%		16.8	521	278
	Forest Type	Distributi	on						
Unit	Hemlock	Fir	Spruce	Mix. Con.	Bluepine	Chirpine	Hard- wood	Mixed HC	Total
%	0%	0%	0%	0%	0%	0%	100%	0%	100%
	Age distribu	ition				Stand type	distributio	า	
Unit	young	imma- ture	mature	Overma- ture	Total	planta- tion	natural	coppice	Total
%	13%	31%	55%	1%	100%	0%	100%	0%	100%
	Canopy clos	ure				Condition			
Unit	dense	closed	open	un- stocked	Total	good	average	poor	Total
%	21%	42%	28%	10%	100%	44%	44%	12%	100%
Site Co	ondition								
	Slope			Erosivenes	ss		Soil Cover		
Unit	gentle	moder- ate	steep	stable	moder- ate	unstable	high	moder- ate	low
%	38%	39%	23%	43%	37%	19%	32%	54%	13%

Intensive Side Uses Extensive Uses Unit Intensive Side Uses Image: Solar Side Uses grazing solshing ing lopping grazing solshing lopping ha 365.6 41.3 339.8 142.6 19.2 54.0 % 41% 5% 39% 16% 2% 6% NWFP abunct NWFP abunct NWFP abunct NWFP abunct	
grazing Soksinging lopping grazing sokshing lopping ha 365.6 41.3 339.8 142.6 19.2 54.0 % 41% 5% 39% 16% 2% 6% NWFP Occurrence and Firewood NWFP sparse Unit Rame	
% 41% 5% 39% 16% 2% 6% NWFP courses and Firewood NWFP abundant NWFP sparse Unit Bame Image: Colspan="5">Colspan="5"Colspa	
NWFP Occurence and Firewood NWFP abundant Unit	
NWFP abundant NWFP sparse Unit Bama	
Unit Bam-	
Unit Bam-	
Firewood boo Cane Daphne Firewood Bamboo Cane Dap	Daphne
ha 335.4 102.1 92.3 4.9 323.6 162.9 159.9 4.9	1.9
% 38% 12% 10% 1% 37% 18% 18% 1%	%
Potential Production	
Timber	
Unit Drashing Cham Tsim Poles, posts Total	
Ntot 28002 4795 2317 1082 36196	
N/ha 32 5 3 1 41	
m3 262305 4690 651 78 267724	
m ³ / _{ha} 297.3 5.3 0.7 0.1 303.5	
Firewood	
Unit > 49cm 30- 49cm cm 10-19 cm Total	
Ntot 5749 14400 27377 94155 141681	
N/ha 7 16 31 107 161	
m3 37756 12086 7561 6713 64116	
m3/ ha 42.8 13.7 8.6 7.6 72.7	
Sivicultural Measures	
Unit Planting Thin- ning Felling (fire- wood) Felling (timber) No Activ- ity	
ha 197.0 168.0 331.1 306.8 135.2	
% 31 26 51 48 21	
Yield Regulation	
AAC 3538 m3	
4.0 m3/ha	
Prod. Potential / AAC 94 years	

Table 36: Summary sheet for Jigmechholing LFMA.

Appendix 6. Summary sheet for Korphu LFMA

Summ	ary Results fo	r Forest Ma	nagement	Area: Korphu G	Gewog				
	Area Distri	bution					Average	Aver.	
Unit	Non-For- est	Protec- tion	Inoper- able	Production	Total		basal area	Stand Vol- ume	No of operable sample
ha	77.5	796.1	439.7	2230.1	3543.4		(m2/ ha)	(m3/ ha)	plots
%	2%	22%	12%	63%	100%		16.4	164	691
	Forest Type	Distributio	n						
Unit	Hemlock	Fir	Spruce	Mix. Con.	Bluepine	Chirpine	Hard- wood	Mixed HC	Total
%	0%	0%	0%	0%	0%	0%	100%	0%	100%
	Age distrib	ution				Stand typ	e distribut	ion	
Unit	young	imma- ture	mature	Overmature	Total	planta- tion	natural	cop- pice	Total
%	10%	33%	51%	1%	94 %	0%	100%	0%	100%
Unit	Canopy clo	sure				Condition	1		
Unit	dense	closed	open	unstocked	Total	good	average	poor	Total
%	6%	55%	31%	8%	100%	57%	31%	12%	100%
Site Co	ndition					·			
	Slope			Erosiveness			Soil Cove	r	
Unit	gentle	moder- ate	steep	stable	moder- ate	unsta- ble	high	moder- ate	low
%	24%	45%	30%	54%	40%	6%	36%	54%	10%
Forest	Use					·			
Unit	Intensive S	ide Uses		Extensive Sid	e Uses				
onne	grazing	sokshing	lopping	grazing	sokshing	lopping			
ha	1072.2	0.0	434.5	342.8	0.0	77.3			
%	48%	0%	19%	15%	0%	3%			
NWFP	Occurence an	d Firewood							
	NWFP abur	ndant			NWFP spa	rse			
Unit	Firewood	Bamboo	Cane	Daphne	Fire- wood	Bamboo	Cane	Daph- ne	
ha	687.9	190.2	76.8	6.4	734.2	404.0	193.6	231.8	
%	31%	9%	3%	0%	33%	18%	9%	10%	

Manag	Management Options							
Unit	No activ- ity	lm- provm.	Timber	Firewood	Silvo- past.	Shoksh- ing		
ha	245.3	328.3	1056.1	600.4	0.0	0.0		
%	11%	15%	47%	27%	0%	0%		
Potenti	al Productio	n						
Unit	Timber	_						
Unit	Drashing	Cham	Tsim	Poles, posts	Total			
Ntot	24605	22479	42622	103996	193702			
N/ha	11	10	19	47	87			
m3	149939	19531	11769	7359	188598			
m3/ha	67.2	8.8	5.3	3.3	84.6			
	Firewood							
Unit	> 49cm	30-49cm	20-29 cm	10-19 cm	Total			
Ntot	13213	34019	63362	153320	263914]		
N/ha	6	15	28	69	118			
m3	50507	28393	17898	10830	107628	1		
m3/ha	22.6	12.7	8.0	4.9	48.3			
	Sivicultural	Measures						
Unit	Planting	Thinning	Felling					
ha	337.5	947.3	954.2	0.0				
%	15%	42%	43%	0%				
	Yield Regul							
			2817	m3				
	AAC		1.3	m3/ha				
	Prod. Poter	ntial / AAC	105	years				

Table 37: Summary sheet for Korphu LFMA

Appendix 7. Summary sheet for Langthel LFMA

Summa	ry Results for	Forest Mana	gement Are	a: Langthel	Gewog						
	Area Distrib	ution					Average	Aver.	No of		
Unit	Non-Pro- duction	Protec- tion	Productio	n	Total		basal area	Stand Volume	Oper- able sample		
ha	244.7	804.2	1907.7		2956.6		(m2/ha)	(m3/ha)	plots		
%	8%	27%	1	23.7	324	185					
	Forest Type	Distribution									
Unit	Hemlock	Fir	Spruce	Mix. Con.	Blue- pine	Chirp- ine	Hard- wood	Mixed HC	Total		
%	% 0% 0% 0%					2%	78%	20%	100%		
	Age distribu	tion			Stand typ	e distribut	ion				
Unityoungimma- turematureOverma- tureTotalplanta- tionnaturalcoppice											

%	17%	31%	47%	5%	100%	2%	#VALUE!	1%	#VAL-
	Canopy closu	Ire				Conditio	<u> </u>		UE!
Unit				un-					_
	dense	closed	open	stocked	Total	good	average	poor	Total
%	13%	46%	30%	11%	100%	44%	42%	13%	99 %
Site Cor	ndition								
	Slope			Erosivenes	is		Soil Cove	r	
Unit	gentle	moder- ate	steep	stable	moder- ate	unsta- ble	high	moder- ate	low
%	28%	55%	17%	53%	37%	10%	35%	50%	15%
Forest L				1					
	Intensive Sid	le Uses		Extensive					
Unit	grazing	sokshing	lopping	grazing	soksh- ing	lopping			
ha	1525.7	180.4	934.5	639.1	14.3	655.5			
%	52%	6%	32%	22%	0%	22%			
NWFP C	Occurence and								
Unit	NWFP abund	lant			NWFP sp				
onit	Firewood	Bamboo	Cane	Daphne	Fire- wood	Bam- boo	Cane	Daphne	
ha	1203.8	236.8	14.3	45.9	558.6	394.7	106.4	380.6	1
%	41%	8%	0%	2%	19%	13%	4%	13%	1
Potentia	al Production								
	Timber								
Unit	Drashing	Cham	Tsim	Poles, posts	Total				
Ntot	35865	12509	5965	9510	63849				
N/ha	19	7	3	5	33				
m3	258667	12187	1624	672	273150				
m3/ha	135.6	6.4	0.9	0.4	143.2				
Unit	Firewood								
NIL	> 49cm	30-49cm	20-29 cm	10-19 cm	Total				
Ntot	23984	49436	78315	245452	397187				
N/ha m3	13 150769	26 43421	41 22269	129 17471	208 233930				
m3/ha	79.0	22.8	11.7	9.2	122.6				
/11J/11a	Sivicultural N	1	• • • •	J.L	122.0				
L loc it	Stricarcarati		Felling						
Unit	Planting	Thinning	(fire- wood)	Felling (timber)	No Ac- tivity				
ha	291.0	206.0	511.0	439.5	1509.5				
%	10	7	17	15	51				
	Yield Regula	tion							
	AAC		4868	m3					
			2.6	m3/ha	-				
	Prod. Potent	ial / AAC	104	years					

Table 38: Summary sheet for Langthel LFMA.

Appendix 8. Summary sheet for Tangsibji LFMA

	ry Results for F		J						
	Area Distrib	ution					Average	Aver.	No of
Unit	Non-Pro- duction	Protec- tion	Producti	on	Total		basal area	Stand Volume	Operable sample
ha	116.8	159.2	216.6		492.6]	(m2/ha)	(m3/ha)	plots
%	24%	32%	44%		100%		21.9	206	66
	Forest Type	Distributio	า						
Unit	Hemlock	Fir	Spruce	Mix. Con.	Blue- pine	Chirpine	Hard- wood	Mixed HC	Total
%	0%	0%	0%	0%	0%	0%	100%	0%	100%
	Age distribu	tion				Stand typ	e distributi	on	
Unit	young	imma- ture	mature	Overma- ture	Total	planta- tion	natural	coppice	Total
%	17%	18%	64%	1%	100%	0%	#VALUE!	0%	#VALUE!
	Canopy clos	ure				Condition			
Unit	dense	closed	open	un- stocked	Total	good	average	poor	Total
%	5%	52%	32%	12%	101%	33%	44%	23%	100%
Site Cor	ndition								
	Slope			Erosivene	ss		Soil Cover	·	
Unit	gentle	moder- ate	steep	stable	moder- ate	unstable	high	moder- ate	low
%	47%	41%	12%	45%	49%	6%	36%	59%	5%
Forest L	Jse								
	Intensive Sig	le Uses		Extensive	Side Uses				
Unit	grazing	soksh- ing	lopping	grazing	soksh- ing	lopping			
ha	67.0	14.9	67.0	156.7	0.0	37.3			
%	14%	3%	14%	32%	0%	8%			
NWFP C	Occurence and	Firewood			1				
	NWFP abune	dant			NWFP sp	arse	1		
Unit	Firewood	Bam- boo	Cane	Daphne	Fire- wood	Bamboo	Cane	Daphne	
ha	147.8	59.1	0.0	9.9	59.1	54.2	0.0	59.1	
%	30%	12%	0%	2%	12%	11%	0%	12%	
Potentia	al Production								
	Timber								
Unit	Drashing	Cham	Tsim	Poles, posts	Total				
Ntot	2451	781	4681	8916	16829				
N/ha	11	4	22	41	78				
m3	16638	726	0	0	17364				
m3/ha	76.8	3.4	0.0	0.0	80.2	1			

	Firewood		•		
Unit	> 49cm	30- 49cm	20-29 cm	10-19 cm	Total
Ntot	1934	7526	10699	33434	53593
N/ha	9	35	49	154	247
m3	5527	6532	2945	2365	17369
m3/ha	25.5	30.2	13.6	10.9	80.2
	Sivicultural N	leasures			
Unit	Planting	Thin- ning	Felling (fire- wood)	Felling (timber)	No Ac- tivity
ha	44.8	0.0	67.2	22.4	358.3
%	9	0	14	5	73
	Yield Regulat	ion			
	AAC		343	m3	
			1.6	m3/ha	
	Prod. Potenti	al / AAC	101	years	

Table 39: Summary sheet for Tangsibji LFMA.

Appendix 9. Summary sheet for Athang LFMA

Summary	Results for Fo	rest Manag	gement Are	ea: Athang G	Gewog				
	Area Distribu	ution					Average	Aver.	No of
Unit	Non-Forest	Protec- tion	Inoper- able	Produc- tion	Total		basal area	Stand Volume	operable sample
ha	49.0	362.0	389.6	1915.3	2715.9		(m2/ha)	(m3/ha)	plots
%	2%	13%	14%	71%	100%		26.7	184	738
	Forest Type D	Distributio	n						
Unit	Hemlock	Fir	Spruce	Mix. Con.	Blue- pine	Chirp- ine	Hard- wood	Mixed HC	Total
%	0%	0%	0%	0%	0%	35%	47%	18%	100%
	Age distribut	tion				Stand ty	pe distribut	ion	
Unit	young	imma- ture	mature	Overma- ture	Total	planta- tion	natural	coppice	Total
%	6%	32%	62%	0%	100%	0%	100%	0%	100%
	Canopy closu	ıre				Conditio	n		
Unit	dense	closed	open	un- stocked	Total	good	average	poor	Total
%	11%	52%	35%	2%	100%	70%	28%	2%	100%
Site Cond	ition								
	Slope			Erosivene	ss		Soil Cover		
Unit	gentle	moder- ate	steep	stable	moder- ate	unsta- ble	high	moder- ate	low
%	30%	48%	22%	76%	19%	5%	55%	39%	6%

Forest Us	e	-			-	-		
	Intensive Sid	le Uses		Extensive	Side Uses	·		
Unit	grazing	soksh- ing	lopping	grazing	soksh- ing	lop- ping		
ha	693.0	59.3	234.2	177.2	11.4	12.4		
%	36%	3%	12%	9%	1%	1%]	
NWFP Oc	curence and Fi	rewood						
	NWFP abunc	lant			NWFP sp	arse		
Unit	Firewood	Bam- boo	Cane	Daphne	Fire- wood	Bam- boo	Cane	Daphne
ha	474.2	246.1	79.2	25.4	299.1	185.4	35.6	241.7
%	25%	13%	4%	1%	16%	10%	2%	13%
Managen	nent Options		Ì		` `			
Unit	No activity	lm- provm.	Timber	Fire- wood	Silvo- past.	Shok- shing		
ha	202.4	643.9	1214.8	649.9	0.0	0.0]	
%	11%	34%	63%	34%	0%	0%		
Potential	Production							
	Timber							
Unit	Drashing	Cham	Tsim	Poles, posts	Total			
Ntot	18388	46549	14731	16554	96222			
N/ha	10	24	8	9	50			
m3	66727	39868	3971	1082	111648			
m3/ha	34.8	20.8	2.1	0.6	58.3			
	Firewood							
Unit	> 49cm	30- 49cm	20-29 cm	10-19 cm	Total			
Ntot	10950	42826	37510	167648	258934			
N/ha	6	22	20	88	135			
m3	34836	40859	10570	11847	98112			
m3/ha	18.2	21.3	5.5	6.2	51.2			
	Sivicultural I	Measures						
Unit	Planting	Thin- ning	Felling					
ha	257.0	607.9	684.5	0.0				
%	13%	32%	36%	0%				
	Yield Regula	tion						
	AAC		3075	m3				
			1.6	m3/ha				
	Prod. Potent	ial / AAC	68	years				

Table 40: Summary sheet for Athang LFMA.

Appendix 10. Summary sheet for Sergithang LFMA

Summa	ary Results for F	orest Mana	gement Are	ea: Sergith	ang Gewog				
	Area Distribu	ıtion					Average	Aver.	No of
Unit	Non-Forest	Protec- tion	Inopera- ble	Produc- tion	Total		basal area	Stand Volume	operable sample
ha	23.8	134.9	38.9	103.6	301.2		(m2/ha)	(m3/ha)	plots
%	8%	45%	13%	34%	100%		19.4	218	32
	Forest Type D	Distribution							1
Unit	Hemlock	Fir	Spruce	Mix. Con.	Bluepine	Chirp- ine	Hard- wood	Mixed HC	Total
%	0%	0%	0%	9%	0%	72%	6%	13%	100%
	Age distribut	tion				Stand ty	/pe distribu	tion	
Unit	young	imma- ture	mature	Over- mature	Total	plan- tation	natural	coppice	Total
%	3%	19%	78%	0%	100%	0%	100%	0%	100%
	Canopy closu	ıre				Conditio	on		
Unit	dense	closed	open	un- stocked	Total	good	average	poor	Total
%	0%	66%	34%	0%	100%	34%	66%	0%	100%
Site Co	ndition						1		
	Slope			Erosivene	ess		Soil Cover		
Unit	gentle	moder- ate	steep	stable	moder- ate	unsta- ble	high	moder- ate	low
%	9%	78%	13%	31%	69%	0%	6%	88%	6%
Forest	Use								
	Intensive Sid	e Uses		Extensive	e Side Uses				
Unit	grazing	sokshing	lopping	grazing	soksh- ing	lop- ping			
ha	13.5	0.0	0.0	61.1	0.0	0.0	-		
%	13%	0%	0%	59%	0%	0%			
NWFP	Occurence and	Firewood							-
	NWFP abund	lant			NWFP spa	rse			
Unit	Firewood	Bamboo	Cane	Daphne	Fire- wood	Bam- boo	Cane	Daphne	
ha	3.1	0.0	0.0	0.0	54.9	0.0	0.0	3.1	
%	3%	0%	0%	0%	53%	0%	0%	3%	
Manag	ement Options								
Unit	No activity	lm- provm.	Timber	Fire- wood	Silvo- past.	Shok- shing			
ha	48.0	37.2	174.5	141.6	0.0	0.0			
%	46%	36%	168%	137%	0%	0%			

Potentia	al Production				
	Timber				
Unit	Drashing	Cham	Tsim	Poles, posts	Total
Ntot	2476	3146	4091	8798	18511
N/ha	24	30	39	85	179
m3	14238	2624	1104	538	18504
m3/ha	137.4	25.3	10.7	5.2	178.6
	Firewood				
Unit	> 49cm	30-49cm	20-29 cm	10-19 cm	Total
Ntot	27	1336	6994	8798	17155
N/ha	0	13	68	85	166
m3	54	1094	1966	968	4082
m3/ha	0.5	10.6	19.0	9.3	39.4
Unit	Sivicultural I	Measures			
Unit	Planting	Thinning	Felling		
ha	6.2	35.2	42.5	0.0	
%	6%	34%	41%	0%	
	Yield Regula	tion			
	AAC		228	m3	
	AAC		2.2	m3/ha	
	Prod. Potent	ial / AAC	99	years	

Appendix 11. LFMP: Monitoring Sheet

Monitoring sh	eet f	or tł	ie ez	ctra	ctior	n of t	ree	s fro	m in	divi	dua	l cor	npa	rtm	ent									
	Tin	nbe	r										Fir	ewo	od									
Compart- ment	Dra	ashi	ng	Ch	ams		Tsi	ms		Ро	les		50	+ cn	n	30	-49 (m	20	-29 (cm	10	-19 d	cm
	Pro	Use	Bal	Pro	Use	Bal	Pro	Use	Bal	Pro	Use	Bal	Pro	Use	Bal	Pro	Use	Bal	Pro	Use	Bal	Pro	Use	Bal

Appendix 12. LFMP: Tree Marking Book for Construction

Tree	Marking	g Book (C	Constru	ction)	·				·			·		·				
					Stand	ding V	olume	in m3					Stan	ding Ve	olume	in m3		
		Loca-	Spe-		Drasl	hing	Shing	g.	Chai	ns	Tsims		Poles 19cm		Posts 19cm	•	< 10 c (Dang	
Year	Date	tion	cies	Dbh	Vol	No	Vol	No	Vol	No	Vol	No	Vol	No	Vol	No	Vol	No

Appendix 13. LFMP: Tree Marking Book for Renovation

Tree	Markin	<mark>g Book</mark> (I	Renovatio	on)														
					Stan	ding V	olume	in m3	3				Stan	ding V	/olume	in m3	;	
Year	Date	Loca- tion	Species	Dbh	Dras	h.	Shin	g.	Chan	ns	Tsim	s	10-1 (Pole		10-19 (Post		Dang 10 cr	-
					Vol	No	Vol	No	Vol	No	Vol	No	Vol	No	Vol	No	Vol	No

Table 42: Tree Marking Book for Renovation allocation

Appendix 14. LFMP: Tree Marking Book for Firewood

T13. re	e Marking	Book (Firewood)										
					Fire	wood						
Year	Date	Location	Species	Dhh	> 50 cm		30-49cm		20-29cm		10-19	cm
				Dbh	Vol	No	Vol	No	Vol	No	Vol	No

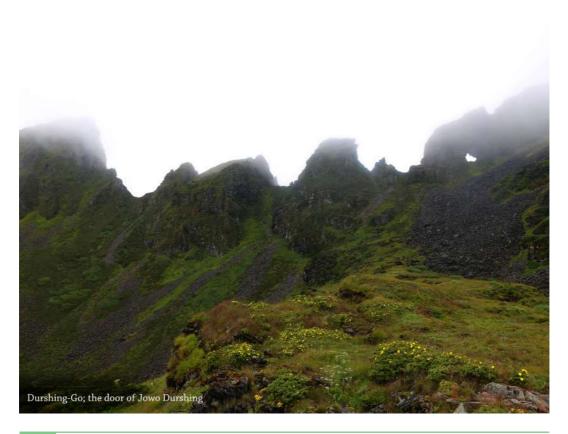
Appendix 15. LFMP: Gewog Register (Construction)

		House	nold		Volume of Timbers alloted in m3 (Standing Volume)						
Year	Date	Name	Thram No.	House No.	Drash- ing	Shin- gleps	Chams	Tsims	Dangch.	Flag Poles	Posts

Appendix 16. LFMP: Gewog Register (Renovation)

		Househo	old		Volume of Timbers alloted in m3 (Standing Volume)						
Year	Date	Name	Thram No.	House No.	Drash- ing	Shin- gleps	Chams	Tsims	Dangch.	Flag Poles	Posts

Appendix 17. LFMP: Timber Allotment Report


Annual statistics of r	ural timber	supply			Year	2019		
Annual Statistics of I		Suppry			Gewog	Tashiding		
Dumpere	Volume of	Timbers allo	ted in m3 (S	tanding Vo	lume)			
Purpose	Drashing	Shingleps	Chams	Tsims	Dangch.	Flag Poles	Posts	Total
Construction								
Renovation								
Other Construction								
Other Purpose								
Total								

Appendix 18. LFMP: Annual Report of LFMA

Enter data in	blue cells									
Year	2019									
Gewog	shari									
AAC in m3/ year	1000									
Remark: volun	ne refers to	the standir	ng volume o	of the tree						
Rural Supply	of constru	ction wood	d for year:	2019		Forest M	anagemei	nt Area: sh	ari	
	Construc	tion	Renovati	on	Other constru	iction	Other pu	rpose	Total	
Product	Number	Volume (m3)	Number	Volume (m3)	Num- ber	Volume (m3)	Number	Volume (m3)	Num- ber	Volume (m3)
Drashing										
Shinglep										
Chams										
Tsims										
Poles										
Posts										
Dangchung										

Total Timber		
Firewood size	Number	Volume (m3)
dbh >50 cm		
dbh 30-49 cm		
dbh 20-29 cm		
dbh 10-19 cm		
Total Firewoo	d	
Realisation of	f AAC	Volume (m3)
Balance from years	previous	
Allowable Cu	t per year	
Already supp	lied	
Balance		

JIGME SINGYE WANGCHUCK NATIONAL PARK Department of Forests and Park Services Ministry of Agriculture and Forests Royal Government of Bhutan Tel: +975 03 527005 Email: jswnp@moaf.gov.bt

